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Abstract In this paper we present a novel extended formulation for the line planning
problem that is based on what we call “configurations” of lines and frequencies.
Configurations account for all possible options to provide a required transportation
capacity on an infrastructure edge. The proposed configuration model is strong in
the sense that it implies several facet-defining inequalities for the standard model: set
cover, symmetric band, MIR, and multicover inequalities. These theoretical findings
can be confirmed in computational results. Further, we show how this concept can
be generalized to define configurations for subsets of edges; the generalized model
implies additional inequalities from the line planning literature.

1 Introduction

Line planning is an important strategic planning problem in public transport. The
task is to find a set of lines and frequencies such that a given demand can be trans-
ported. There are usually two main objectives: minimizing the travel times of the
passengers and minimizing the line operating costs.

Since the late 90s, the line planning literature has developed a variety of in-
teger programming approaches that capture different aspects, for an overview see
Schöbel [10]. Bussieck, Kreuzer, and Zimmermann [5] propose an integer program-
ming model to maximize the number of direct travelers. Operating costs are dis-
cussed for instance in the article of Goossens, van Hoesel, and Kroon [7]. Schöbel
and Scholl [11] and Borndörfer and Karbstein [3] focus on the number of transfers
and the number of direct travelers, respectively, and further integrate line planning
and passenger routing in their models. Borndörfer, Grötschel, and Pfetsch [1] also
propose an integrated line planning and passenger routing model that allows a dy-
namic generation of lines.

All these models employ some type of capacity or frequency demand constraints
in order to cover a given demand. In this paper we propose a concept to strengthen
such constraints by means of a novel extended formulation. The idea is to enumerate
the set of possible configurations of line frequencies for each capacity constraint. We
show that such an extended formulation implies general facet defining inequalities
for the standard model.

We consider the following basic line planning problem: We are given an undi-
rected graph G = (V,E) representing the transportation network; a line is a simple
path in G and we denote by L = {`1, . . . , `n}, n ∈ N, the given set of lines. We
denote by L(e) := {` ∈ L : e ∈ `} the set of lines on edge e ∈ E. Furthermore,
we are given an ordered set of frequencies F = { f1, . . . , fk} ⊆ N, k ∈ N, such that
0 < f1 < .. . < fk, and we define F0 := F∪{0}. The cost of operating line ` ∈ L at
frequency f ∈ F is given by c`, f ∈ Q≥0. Finally, each edge in the network bears a
positive frequency demand F(e) ∈N; it gives the number of line operations that are
necessary to cover the demand on this edge.

A line plan (L̄, f̄ ) consists of a subset L̄⊆L of lines and an assignment f̄ : L̄→
F of frequencies to these lines. A line plan is feasible if the frequencies of the lines
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satisfy the frequency demand F(e) for each edge e ∈ E, i.e., if

∑`∈L̄(e) f̄ (`)≥ F(e) for all e ∈ E. (1)

We define the cost of a line plan (L̄, f̄ ) as c(L̄, f̄ ) := ∑`∈L̄ c`, f̄ (`). The line planning
problem is to find a feasible line plan of minimal cost.

2 Standard Model and Extended Formulation

A common way to formulate the line planning problem uses binary variables x`, f
indicating whether line `∈L is operated at frequency f ∈F. In our case, this results
in the following standard model:

(SLP) min ∑
`∈L

∑
f∈F

c`, f x`, f

s.t. ∑
`∈L(e)

∑
f∈F

f x`, f ≥ F(e) ∀e ∈ E (2)

∑
f∈F

x`, f ≤ 1 ∀` ∈ L (3)

x`, f ∈ {0,1} ∀` ∈ L, ∀ f ∈ F. (4)

Model (SLP) minimizes the cost of a line plan. The frequency demand con-
straints (2) ensure that the frequency demand is covered while the assignment con-
straints (3) guarantee that every line is operated at at most one frequency.

In the following, we give an extended formulation for (SLP) that aims at tight-
ening the LP-relaxation. Our extended formulation is based on the observation that
the frequency demand of an edge can also be expressed by specifying the minimum
number of lines that have to be operated at each frequency. We call these frequency
combinations minimal configurations and a formal description is as follows.

Definition 1. For e ∈ E define the set of (feasible) configurations of e by

Q̄(e) :=
{

q = (q f1 , . . . ,q fk) ∈ ZF
≥0 : ∑ f∈F q f ≤ |L(e)|,∑ f∈F f q f ≥ F(e)

}
and the set of minimal configurations of e by

Q(e) :=
{

q ∈ Q̄(e) : (q f1 , . . . ,q fi −1, . . . ,q fk) /∈ Q̄(e) ∀ i = 1, . . . ,k
}
.

As an example, consider an edge with frequency demand of 9. Let there be three
lines on this edge, that each can be operated at frequency 2 or 8. To cover this
demand we need at least two lines with frequency 8 or one line with frequency 2
and one line with frequency 8.

We extend (SLP) using binary variables ye,q that indicate for each edge e ∈ E
which configuration q ∈ Q(e) is chosen. This results in the following formulation:
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(QLP) min ∑
`∈L

∑
f∈F

c`, f x`, f

s.t. ∑
`∈L(e)

x`, f ≥ ∑
q∈Q(e)

q f ye,q ∀e ∈ E, ∀ f ∈ F (5)

∑
q∈Q(e)

ye,q = 1 ∀e ∈ E (6)

∑
f∈F

x`, f ≤ 1 ∀` ∈ L (7)

x`, f ∈ {0,1} ∀` ∈ L, ∀ f ∈ F (8)
ye,q ∈ {0,1} ∀e ∈ E, ∀q ∈ Q(e). (9)

The (extended) configuration model (QLP) also minimizes the cost of a line plan.
The configuration assignment constraints (6) ensure that exactly one configuration
is chosen for each edge, while the coupling constraints (5) guarantee that a sufficient
number of lines is operated at the frequencies w.r.t. the chosen configurations.

2.1 Model Comparison

The configuration model (QLP) provides an extended formulation of (SLP), i.e., the
convex hulls of all feasible solutions—projected onto the space of the x variables—
coincide. The same does not hold for the polytopes defined by the fractional solu-
tions, since (QLP) provides a tighter LP relaxation.

Band inequalities were introduced by Stoer and Dahl [12] and can also be applied
to the line planning problem. Given an edge e ∈ E, a band fB : L(e)→ F0 assigns a
frequency to each line containing e and is called valid band of e if ∑`∈L(e) fB(`)<
F(e). That is, if all lines on the edge are operated at the frequencies of a valid band,
then the frequency demand is not covered and at least one line needs to be operated
at a higher frequency. Hence, the band inequality

∑
`∈L(e)

∑
f∈F: f> fB(`)

x`, f ≥ 1 (10)

is a valid inequality for (SLP) for all e∈E and each valid band fB of e. The simplest
example is the case fB(`)≡ 0, which states that one must operate at least one line on
every edge, i.e., the set cover inequality ∑`∈L(e) ∑ f∈F x`, f ≥ 1 is valid for PIP(SLP)
for all e ∈ E. We call the band fB symmetric if fB(`) = f for all ` ∈ L(e) and for
some f ∈ F. Note that set cover inequalities are symmetric band inequalities. We
call the valid band fB maximal if there is no valid band fB′ with fB(`)≤ fB′(`) for
every line `∈L(e) and fB(`)< fB′(`) for at least one line `∈L(e). Maximal band
inequalities often define facets of the single edge relaxation of the line planning
polytope, see [9]. The symmetric ones are implied by the configuration model.
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Theorem 1. ([8]) The LP relaxation of the configuration model implies all band
inequalities (10) that are induced by a valid symmetric band.

The demand inequalities (2) can be strengthened by the mixed integer rounding
(MIR) technique [6]. Let e ∈ E, λ > 0 and define r = λF(e)−bλF(e)c and r f =
λ f −bλ f c. The MIR inequality

∑
`∈L(e)

∑
f∈F

(r bλ f c+min(r f ,r))x`, f ≥ r dλF(e)e (11)

is valid for (SLP). These strengthened inequalities are also implied by the configu-
ration model.

Theorem 2. ([8]) The LP relaxation of the configuration model implies all MIR
inequalities (11).

The configuration model is strong in the sense that it implies several facet-
defining inequalities for the standard model. However, the enormous number of
configurations can blow up the formulation for large instances. Hence, we propose
a mixed model that enriches the standard model by a judiciously chosen subset of
configurations; only for edges with a small number of minimal configurations the
corresponding variables and constraints are added. This provides a good compro-
mise between model strength and model size. We present computational results for
large-scale line planning problems in [2] and [8] that confirm the theoretical findings
for the naive configuration model and show the superiority of the proposed mixed
model. Our approach shows its strength in particular on real world instances.

3 Multi-Edge Configuration

In this section we generalize the concept of minimal configurations with the goal to
tighten the LP relaxation further. The idea is to define configurations for a subset
of edges. For this purpose we partition the lines according to the edges they pass
in Ẽ, Ẽ ⊆ E. Let E ′ ⊆ Ẽ, then we denote by L(E ′)|Ẽ := {` ∈ L : `∩ Ẽ = E ′} the
set of lines such that E ′ corresponds to the edges they pass in Ẽ and define E(Ẽ) :=
{E ′ ⊆ Ẽ : L(E ′)|Ẽ 6= /0}. A multi-edge configuration specifies for each line set in
this partition how many of them are operated at a certain frequency. The formal
definition reads as follows:

Definition 2. For Ẽ ⊆ E, let Q̄(Ẽ) ⊆ ZE(Ẽ)×F
≥0 be the set of (feasible) multi-edge

configuration of Ẽ with Q ∈ Q̄(Ẽ) if and only if

∑
f∈F

QE ′, f ≤
∣∣L(E ′)|Ẽ ∣∣ ∀E ′ ∈ E(Ẽ), (12)

∑
E ′∈E(Ẽ):

e∈E ′

∑
f∈F

f ·QE ′, f ≥ F(e) ∀e ∈ Ẽ. (13)
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We call a multi-edge configuration Q ∈ Q̄(Ẽ) minimal if there is no Q̄ ∈ Q̄(Ẽ) such
that Q̄E ′′, f ≤QE ′′, f for all E ′′ ∈ E(Ẽ), f ∈F and Q̄E ′′, f < QE ′′, f for some E ′′ ∈ E(Ẽ),
f ∈ F. The set of minimal multi-edge configurations of Ẽ is denoted by Q(Ẽ).

Let E be a cover of E, i.e., E ⊆ 2E such that
⋃

E ′∈E E ′ = E. We extend the
standard model (SLP) with binary variables yE ′,Q indicating for each subset of edges
E ′ ∈ E which minimal multi-edge configuration Q ∈ Q(Ẽ) is chosen. The multi-
edge configuration model induced by the edge cover E is defined as follows:

(E -QLP) min ∑
`∈L

∑
f∈F

c`, f x`, f

∑
`∈L(E ′)|Ẽ

x`, f ≥ ∑
Q∈Q(Ẽ)(Ẽ)

QE ′, f · yẼ,Q ∀ Ẽ ∈ E , ∀E ′ ∈ E(Ẽ), ∀ f ∈ F (14)

∑
Q∈Q(Ẽ)

yẼ,Q = 1 ∀ Ẽ ∈ E (15)

∑
f∈F

x`, f ≤ 1 ∀` ∈ L (16)

x`, f ∈ {0,1} ∀` ∈ L, ∀ f ∈ F (17)
yẼ,Q ∈ {0,1} ∀ Ẽ ∈ E , ∀Q ∈Q(Ẽ). (18)

The multi-edge configuration model (E -QLP) minimizes the cost of a line plan.
Since for each edge e ∈ E in (E -QLP) a minimal multi-edge configuration is cho-
sen for the subset Ẽ ∈ E containing e, the frequency demand of e is satisfied by
every feasible solution of (E -QLP). Model (E -QLP) also provides an extended for-
mulation for (SLP).

Let Ẽ ⊆ E such that α(Ẽ) := max{|`∩ Ẽ| : ` ∈ L}> 0 and F(E ′) = ∑e∈Ẽ F(e) ,
then the aggregated frequency inequality (Bussieck [4])

∑
`∈L(E ′)

∑
f∈F

f x`, f ≥
⌈

1
α(Ẽ)

F(E ′)
⌉

(19)

and the aggregated cardinality inequality

∑
`∈L(E ′)

∑
f∈F

x`, f ≥
⌈

1
α(Ẽ)

|Ẽ|
⌉

(20)

are valid for (SLP). These inequalities are in general not valid for the LP relaxation
of the standard model (SLP) and the configuration model (QLP). However, regard-
ing the multi-edge configuration model (E -QLP) we obtain the following result.

Proposition 1. ([8]) Let E be a cover of E and Ẽ ∈ E s.t. α(Ẽ)> 0. Then the aggre-
gated frequency inequality (19) and the aggregated cardinality inequality (20) for
Ẽ are implied by the LP relaxation of the multi-edge configuration model (E -QLP).
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