

XLI - THE PCA SCRIPT LANGUAGE

History:
The first XLI interpreter came out in1993 as the "XLI-Toolkit" which was a book and a
couple of scripts and utilities for the PCA for DOS.

With the windows versions of PCA - Argus a couple of functions and codes were added.
This manual has until now been updated with small bits and pieces only.

The present version (2020) has all the new codes and functions included, some few are
deprecated, but still included to only give a no-operation, so that older modules are not
stopping with a syntax error.

Introduction

The XLI interpreter is built into PCA / ARGUS. The interpreter can handle astrological
interpretations as well as other text or graphics outputs and special calculations. It also
gives access to a couple of Argus’ settings. A number of modules and interpretations are
commercially available while other are free. Some of them can be downloaded from the
Electric Ephemeris website www.electric-ephemeris.com.

You may also program XLI modules yourself. You can do some simple stuff without being
a programmer, but you can also write very sophisticated modules or interpretations with a
lot of graphic details, specialized calculations, tables, ephemerides, etc.

You can add as many modules as you like and they can be branched and chained into any
structure, and you may add menus to navigate around.

This documentation will give you the information necessary to write your own modules and
provide a complete XLI function reference and examples.

You may look into any modules provided with your PCA program, or you may download
extra modules and look into them to figure out how they are programmed.

Some modules may be encrypted which will restrict any editing. Argus has a module editor
inbuilt (FILE > EDIT MODULE) which will let you change text parts of a module even if it is
encrypted.

Using and writing interpretations (entry level)

The XLI interpreter offers an extensive and utmost flexible mechanism for writing computer
interpretations. You may define even very complex rules and texts. Even though this
manual provides the information necessary, it is not a beginners job to write a complex--
rule interpretation.

For simple interpretations, Argus is distributed with ready-made interpretation skeletons
and a built-in fool-proof texteditor. You may use these to write your own full blown inter-
pretation, or you may use it as a note-organizer for basic astrological combination rules.

 You may have objections about computer interpretations. We would certainly agree that

the computer cannot "understand" the person behind the chart, nor have any
psychological insight. But computers are very good at organising facts and freeing you of
the systematical (and boring) work. So you may for example use the interpretation
skeletons to insert your experiences of certain combinations when you meet them, and let
the program scan all new charts to remind you, when the same combination reappears. As
a beginner, you may put your notes from books and lectures into the skeletons in the same
way.

If you wish to do more complex things, you must refer to the second part of this manual,
describing the XLI programming language functions.

INSTALLATION OF NEW MODULES IN ARGUS:

If a module is not prepared for automatic installation, you must use the setup menu in
ARGUS to manually create a menu item and connect it to any XLI file on the harddisk.

If the module is prepared for automatic installation, it is usually a packed set of files
including a .def file giving a list of files to copy, a name, optionally a name of a subdirectory
where to put the files, also optionally an .ico file or a name of one of the standard .ico files
Argus provides.

DEF FILE:

Transit-Interpretation

TYDT
200
TT1.TXT
TT2.TXT
TT3.TXT
TT4.TXT
TT5.TXT
TT6.TXT
TT7.TXT
TT8.TXT
TT9.TXT
TT10.TXT

The first line is the text which will be put on the menu item, which should be the name of
the interpretation.

The second line is the name of the subdirectory under ARGUS, in which the interpretation
files should be placed.

The third line is a number, telling how many kilobytes the installaion will need, so that the
installation program can give a warning if the harddisk is too filled up to hold the files.

The fourth line onwards are the names of the text files. The first of these must be the entry
file, i.e. the first in the call chain.

Transit Interpretation

TYDT
200
TT1.TXT
TT2.TXT
TT3.TXT
TT4.TXT
TT5.TXT
&TT6.TXT
TT7.TXT
TT8.TXT
TT9.TXT
TT10.TXT

XLI Programming

THE CONCEPT OF XLI MODULES

The PCA astrology program has a built-in option to interpret external add-on files. These
files may be interpretation texts, choice menus, position printouts, aspect tables,
educational programs, and even completely separate programs as for example text
editors.

These add-on modules which we in this book will refer to as XLI-modules may be written
by anyone, just using the basic Notepad editor included in Window. How to do this, is what
this chapter is about.

Writing your own modules or interpretations will need something between no programming
skills at all up to expert level depending on the task. So you can choose your own level
and proceed to higher levels if you like.

ABOUT THIS CHAPTER

You will be guided through the XLI mysteries in stages revealing the different features of
the language starting at the very basic level and leading towards more sophisticated use.

At each level you will find reference to ready made tested examples that you can try out for
yourself.

XLI FILES

The XLI-modules are text files (ASCII-Files). Files are named groups of data, that can be
stored on your disc and printed to your printer. A text file as opposed to a program file or
binary file can be read on the screen or printed to paper and still make some kind of sense
to the reader.

The file system needs that all files have names of letters or numerals. Underscore and
stroke is also allowed. Normally a file name has two parts separated by a full-stop. The 8
part is the name, and the last (normally consisting of three letters) after the fullstop are
called the extension. The extension is normally used to tell something about the kind and
purpose of the file. The XLI-files all have the extension XLI or TXT. The filename and
extension are separated by a fullstop e.g. TRANSIT.XLI. The .TXT extension is intended
for interpretation texts, while the XLI extension should be used for functional modules
doing other things.

The XLI files are made of a mixture of text and coding (program instructions). The text is to
be printed (on conditions) or may be just explanatory comments. The coding is instruction
to the PCA program to do certain tasks, for example look into charts and check positions

and aspects, change dates, add numbers, store ratings or whatever. The text and coding
is separated following certain rules, which are described in this manual.

CREATING OR EDITING XLI-FILES

CHOOSING AN EDITOR

To be able to create or change a textfile you will need a text editor program. There are a lot
of such programs available. You may keep it simple and use Windows Notepad. For
bigger files you need a more capable editor.

If you cannot find a useful editor amongst your existing software you may use an ordinary
wordprocessor (Word/Writer). The problem about this is, that wordprocessors are
somewhat too advanced for this job, and you must deliberately ask it to remove all its inter-
nal instruction, underlining, different fonts etc from its files. Nearly any wordprocessor has
instructions to create ASCII files which does exacly this. But there may still be concern
about automatic linefeeds, page shifts and the like. Luckily a lot of text editor programs are
free. Personally I use TextPad, but there are plenty

RUNNING THE XLI MODULES FROM ARGUS

The PCA manual describes 4 ways of accessing external modules. Though these methods
can be used quite interchangeably, we would recommend:

The XLI-Menu: Just click into File | XLI-Menu and navigate to find the module to run.

A Macro: Press C and enter XOfile,ext. "file" means the first part of the filename, "ext" the
extension, which is normally XLI. Note that file and extension are separated by a comma
instead of the usual fullstop. Instead a fullstop must be inserted after the extension. For
example to call the module EPHGEN.XLI you should enter XOEPHGEN,XLI.

An F-key: Use the makro key definition in the files pulldown menu, and enter a makro
string into a free F-key definition field. The macro must be same format as for a single
macro. Remember to save the F-key definitions by clicking Preferences | Save-to-disk.

NOTE: A running XLI module may be interrupted by ESC returning to the PCA main menu.
This will normally do no harm, but some modules will change the input data or other
system values, and by pressing ESC, you will not give them a chance to reset it to its
original values.

XLI FILE BASICS

Having found a suitable editor program, you may begin to look at the XLI-files provided.
You'll find some of them quite complex, and others quite easy.

An XLI-module or interpretation may be just one single file, but often several files are
chained together. If chained, The XLI interpreter will read the complete chain. Chaining
files is done at the end of each file by stating the name of the next file. If no name is
stated, the file will be considered the last, and the XLI interpreter will put control back to
the user and the main menu.

In more complex modules, several next-file names may be given and a menu or state of
the program may decide which one to branch to

THE XLI PARAGRAPH

An XLI module is made up of one or more (chained) files, and each file is made up of one
or more paragraphs. The paragraph is the basic building block of the XLI module.

Each paragraph must have some program instructions (Coding). These instructions can do
a lot of things. For interpretations, they are used to calculate or find out whether the
following text applies to the given chart, for example if the Moon is square to Mars. For
modules they may setup menus, change characteristics of the PCA main program, control
printer, print graphs or figures, control the XLI interpreter etc etc.

After the coding, there may be some text for printout. This text may be of two kinds:
Commentary text or heading, and ordinary text.

The following example is a very short file just printing a text if the Sun is in Leo (in the
latest Radix chart):

$ $-line
1 PSI 5 = ;coding

*Sun in Leo Heading/comment (optional)

Dignity, good self-esteem.. Text (optional)
$ Next paragraph

$-LINE: A paragraph must always start with a $-line. This is just a line consisting of one $-
sign.

CODING: Next comes the coding part. This may be one or more lines starting just after the
$-line. Beware, that no blank line just after the $-line is accepted. In that case, the module
may terminate execution at that point.

The coding simply means:

1 Sun=1)
PSI (planet in sign)
5 (Leo=5)
= ("is").

You may find, that the instructions seem "reversed order". The idea is quite simple though
and will be explained later. For the moment, you don't need to bother.

HEADING: The Heading/comment part is optional. If used, it must start with an asterisk.
There may be just one or several lines. The headings are printed only if the module is
called with OI (Alternative interpretation). The heading is terminated with a blank line.

TEXT: The text part comes last. It can be any text, and it may be as many lines as you
wish. It is possible to insert templates for printing variable numbers or to a limited degree
varible text strings, for example to put the person's name into the text. It is also possible to
produce bar graphs.

COMMENTS

It is often very useful to put comments into your XLI modules. Comments are notes for the
programmer and for others, who like to look into your files. If you after some time get back
and want to add or change anyting, you will find, that you do not remember any more,
what your coding is doing, so you will have to analyze each code. By inserting comments,
you have a way of reminding yourself, what each part of your program is doing. The
modules provided with this toolkit have a lot of comments.

Comments have no influence on the module itself. It will work the same with or without
comments. You may find a slight reduction in speed if you put a lot of comments, because
the XLI interpreter will need to identify and discard all the comment parts. Normally this will
be no problem, and we strongly recommend commenting your codes.

To insert a comment, start with a semicolon and put the comment after this. The interpreter
will ignore the semicolon and the remainder of that line.

If you need several lines of comments, each comment line must start with a semicolon.

The comments will normally be placed in the coding part of the paragraph to explain the
workings of the coding. You may place the comments on the same line as the codes or in
a line of its own. Look into the coding examples and see how it is done.

You may also place commentary text in the $-line. Functionally, only the $ sign is needed,
so the rest of the line is free to use. This is a good place to put a note, what the paragraph
is doing.

If you wish to place comments in the text or header parts of the paragraph, the semicolon
must be at the very start of the line. That means, that you may not mix printable text and
comments on the same line.

CODING YOUR FILES

The XLI interpreter uses a unique coding language. It uses a notation somewhat like
FORTH or the old HP-pocket calculators. Technically it is called "Stack-orientated" or

”reverse polish notation”. You may find it hard to read, but implementing it in Argus was
simpler than creating a complete language like JavaScript.

To program, you write a mixture of numbers and codes on one or more lines as you wish.
You will find, that breaking your coding into many short lines is easier to read and
understand. This also leaves room for adding comments.

To illustrate, the coding below calculates the distribution of the fire element in a chart using
a point system:

$
14 PSI 0 1 5 9 IN 3 MUL ;Asc in fire, 3 points
1 PSI 0 1 5 9 IN 3 MUL ADD ;Sun in fire, 3 points
2 PSI 0 1 5 9 IN 2 MUL ADD ;Moon in fire, 2 points
5 PHS 0 1 10 IN ;Mars in 1. or 10. house
1 PHS 0 1 10 IN OR ;Sun in 1. or 10. house
3 MUL ADD ;3 points
3 10 FOR ;count planets Mercury to Pluto
1 CNT PSI 0 1 5 9 IN ADD ;if in fire, add 1 point each
NEXT ;end of count loop
11 STO 0 ;store result in cell 11

Don't worry too much about the codes here. Their meaning will be explained later.

Here the codes are arranged so that each line works as a kind of "functional subunit". The
comments are very useful as a reminder of what you are doing and will make it easier to
read.

You may put up to 1000 characters into the coding field including comments. If you need
more coding, you must spread it on more paragraphs. If a paragraph has no text fields,
just coding, the interpreter will just continue on the next paragraph.

The stack orientation means, that you must adapt to the first-in first-out way of thinking.
Adding 2 and 2 will look like this:

2 2 ADD

Note, that the numbers come first, then the instruction what to do with the numbers. So
ADD will happily add whatever it finds on the stack, in this case the two numbers 2 and 2.
These two numbers are removed, and the result, 4 is put back on the stack.

A parallel to this way of thinking is how you operate Argus itself. First you enter birth data,
then you call the horoscope calculation. In other programs you may find calling a radix,
you will get a dialog box for entering data.

WRITING TEXT LINES

The coding must always be terminated by one blank line. From then off and till the next $-
line you may insert any quantity of text, limited only by disc space. We would recommend,
however, that you keep your text in small paragraphs which are more manageable.

It is possible to merge a limited number of variable strings and numbers into the text, for
instance if you wish to print planetary positions etc from the program.

LINE CONCATENATION

If you for some reason wish to compose a line of two or more parts, you may do so by line
concatenation. If a line ends with a backslash (\), the normal carriage return and linefeed
will be omitted, so that the following line will just continue at the end of the current (not
printing the backslash of course). The second (or more) part(s) may even be added in next
paragraph.

THE STACK

It was earlier mentioned, that XLI is stack-orientated, and that this means that you must
put values first. Stack operation is beautifully simple and very powerful. However, because
we normally write calculations in a different style (alge-braic notation), it takes time getting
used to it.

Here is an example of an ordinary calculation task:

(5+8)*(8-3)

The result should be 65.

The parenthesis are necessary to assure, that the calculations are done in the correct
order. In some systems, some of the parenthesis may be omitted, if there exists a
definition that gives priority to certain operations (*/+-) over others. Parenthesis and
operator hierarchy is in fact very akward and complicated, but we are used to looking at
problems this way.

Actually, you may find, that different pocket calculators give different result to the same
task due to different operator hieararchy used.

The same problem coded in XLI would look like this:

5 8 ADD 8 3 SUB MUL

This reflects the way you actually would solve the problem: add 5 and 8, keep the result
while subtracting 8 and 3, then multiply the two results. No parentheses are needed,
calculations are shown in the same order that they must be executed.

If the parentheses in the above example were moved like this:

5+(8*8)-3

The result should now be 66.

In XLI notation it would look like this:

5 8 8 MUL ADD 3 SUB

The instructions rather than the parenthesis are rearranged to reflect the changed
execution order.

This brings us back to the stack. To do the above calculation, the system must have some
means of keeping the intermediate results. Here five is kept while multiplying 8*8, before
the addition is possible. This is done using the stack.

In stack orientated languages like XLI, you must first put the numbers on the stack, then
add, multiply etc.

To illustrate the matter, we will look at the above example once more, showing the stack
content for each operation:

$ coding ;stack content top bottom
5 ;5
8 ;8 5
8 ;8 8 5
MUL ;64 5
ADD ;69
3 ;3 69
SUB ;66

Each time you put a number in the coding, it will be put on top of the stack. The MUL and
ADD functions use the numbers on the stack and place the result back on top.

So you do not really need to worry about what to do with the result. Just leave it on the
stack till you need it next time.

You cannot overload or empty the stack, it is actually circular. It is your own responsibility,
that the stack holds the numbers you need. On the other hand, you do not need to cleanup
waste, when you are finished. There is however a limit, how many numbers, you can put
on the same time, being circular, at some point, the last entered value will overwrite the
first.

The size of the stack is 1024. So you may not put more than 1024 numbers on the stack
before the first numbers will be over-written. This will rarely be any problem, but in case,
the ISTKZ XLI code may be used to resize the stack to max 32000.

The XLI interpreter has a facility called the DEBUGGER. With the debugger switched on,
you may check your coding step by step and check the contents of the stack. The
debugger prints somewhatlike the example shown above:

The debugger window will also show values of strings and floating point numbers

MEMORY CELL ARRAY

This is an alternative to storing numbers on the stack. Because the stack is limited in size
and is constantly changing, it will often be difficult to remember, how "deep down" the
stack, your numbers are placed.

There are 3000 memory cells in XLI numbered 0-2999. There you may save numbers and
calculation results for later use. You may however expand the limit using ISTOZ up to
32000.

The two codes STO and RCL are used to store and recall numbers from the memory array.

There are three main uses for the memory cell array:

1) store results, for example planetary positions etc.

2) create tables, for example the rulers of the 12 signs:

 5 1 STO ;Mars (5) rules Aries (cell 1)
 4 2 STO ;Venus (4) rules Taurus (cell 2)
 3 3 STO ;Mercury (3) rules Gemini (cell 3)
 2 4 STO ;Moon (2) rules Cancer (cell 4)
 1 5 STO ;Sun (1) rules Leo (cell 5)
 3 6 STO ;Mercury (3) rules Virgo (cell 6)
 4 7 STO ;Venus (4) rules Libra (cell 7)
10 8 STO ;Pluto (10) rules Scorpio (cell 8)
 6 9 STO ;Jupiter (6) rules Sagittarius (cell 9)
 7 10 STO ;Saturn (7) rules Capricorn (cell 10)
 8 11 STO ;Uranus (8) rules Aquarius (cell 11)
 9 12 STO ;Neptune (9) rules Pisces (cell 12)

3) store parameter constants.

You may program a printout of aspects etc, using certain orb limits and a certain set of
planets.

You may of course insert the orb limits etc. directly into the coding where needed. But if
you store them in memory cells at the very start of the module, and recall them when
needed in your coding, it is very easy to make modifications, because you do not need to
search for the insertion place(s), you need just to change one number at the module start.

STO and RCL are used intensively throughout the utility modules provided

INTEGER NUMBERS

Most XLI coding works on integers. A separate set of codes are provided for decimal
numbers,

The calculation:

5 2 DIV (divide 5 by 2)

will produce 2, not 2.5. This is important to remember.

The integers may range from -32768 to +32767. These limits may seem strange if you do
not know about binary numbers. But don't worry, it will rarely be any problem. If you try to
add 1 to 32767, you will actually get the result -32768. So when the limit is reached the
numbers start happily over from the other end. Of course this result is wrong and you
should normally prevent your coding from producing numbers of that size.

With more modern systems, the integer range is actually expanded to double precision.
Also in Argus, you may find it possible to pass the integer limitsmentioned above. For
example you can create a loop counting 1 to 100000, but you should not rely on double
precision for all functions witout testing it yourself.

CALCULATING MIDPOINTS AND ANTISCIONS

- The intang unit

The way integer overflow is handled as described above is actually exploited in PCA.
Zodiacal positions are normally 0-360 degrees, and exceeding 360 degrees you will just
start over from 0.

The intang unit is a way of holding angles using the full integer range, so that overflow in
both directions are auto-matically handled. Such angles may be multiplied (harmonics)
added and subtracted, never worrying about the problem of exceeding the circle.

A number of XLI functions use the intang unit, and of course there are also functions to
turn them back into a readable format. One intang unit equals approximately 20 seconds
of arc (19.77) which is better than the planetary accuracy of Argus.

The ITOM converts the intang units to a positive angle in minutes. In some cases you may
want a positive or negative value of 0 to +-10800 (+-180 degrees). In that case, just use
ITOMS instead of ITOM.

For example if you want to calculate an aspect angle, subtrac-ting two planets, for
example Sun-Mars:

1 PPOS ;Sun position
5 PPOS SUB ;Mars-Sun angle (intang units)
ITOMS ABS ;0-10800 positive

So the aspect angle will be the shortest angle between the two planets, and positive.

Also if you calculate signed orbs or declinations and latitudes, they are +- values rather
than 0-360.

WRITING SIMPLE INTERPRETATIONS

As we have seen, the XLI paragraph consists of four parts: $-line, coding, heading and
text.

When writing interpretations, these parts have the following meaning:

1. $-line paragraph delimiter
2. coding astrological rule
3. heading astrological explanation
4. text interpretation text

The heading is not mandatory, but it provides a means of allowing the end user to choose
if he wishes an astrological explanation put into the interpretation text or just want the plain
text printed.

Here's an example of a very simple interpretation paragraph:

$
8 PHS 2 =

*Uranus in the 2. house

Ups and downs in fortune, unsettled state, gains through
discoveries, mechanism, banks, railways, music and through
electricity.
$

The code line is the way to tell the PCA interpreter, that it should inspect the latest
calculated chart to see, if Uranus was in the 2. house:

8 PHS ;fetch the actual house position of Uranus
2 ;stack the desired house position
= ;compare the two numbers (positions)

If the two numbers are equal, i.e. if 8 PHS equals 2, the result will be 1. In XLI 1 means
"true" and 0 means "false". If the result is true the text part will be printed, if false it won't.

The heading is the way to tell the reader (not the computer), which rules have been used.
This will be printed together with the text part. There is an option in the program
preferences to include or leave out the headings from an interpretation output.

You may leave out the heading or just put the explanation into the text itself, the
interpretation will function anyway, but in that case the end user will not be able to have it
printed optionally. The heading may be any number of lines and is terminated by a blank
line.

The text part may be any number of lines and is terminated by the $-line starting the next
paragraph.

CODING EXAMPLES FOR INTERPRETATIONS:

If you call the module editor (see the chapter on using and writing interpretations) and look
into the interpretation skeletons, you'll find a lot of useful examples of coding basic
astrological rules. When you choose a rule for editing, you'll see a window at the top of the
screen showing the coding for that rule.

Here is a complete list of the codes referencing the stored chart(s):

Simple codes:

PSI planet in sign
PHS planet in house
RX planet retrograde
HSI house in sign
HRU house ruler
APOW aspect power
ANUM aspect number
AORB aspect orb
PDEG planet position (degrees)
BDPR print birth data
NPR print name

Advanced codes
AZP aspect test primitive
PPOS planet position (intang unit)
HPOS house position (intang unit)
PV planet speed (intang unit)
HV house speed (intang unit)
PLA calculate single planet (intang unit)
XPLA retrieve additional planetary information
HOUSE calculate single house (intang unit)
JD get julian date
DDIF find difference between two dates
BHUS house position (universal)
KUN get 3 closest Kündig sections

Examples using the advanced codes are given later.

Now let us look at some examples of common coding tasks:

2 PSI 10 = ;Moon (2) in Capricorn (10)
6 PHS 11 = ;Jupiter (6) in 11.th house
3 RX ;Mercury (3) retrograde
7 RX ;Saturn (7) retrograde
6 HSI 8 = ;6.th house cusp in Scorpio (8)
1 HSI 12 = ;Ascendant(1)in Pisces (12)
14 PSI 12 = ;Ascendant(14)in Pisces (12)

The last two examples are actually testing the same thing. The ascendant is house no. 1
and "planet" number 14. Six of the houses have "planet" numbers, so they can be tested
using the planet rule codes.

For a list of the numbers of planets, houses, aspect numbers etc, see the function
reference section, where these numbers are listed in tabular form.

Please note that the results above are all YES or NO: Retrograde or not retrograde, equal
to or not equal to etc. YES (1) or NO (0) results are used when a text must be printed or
not printed. The code 2 PSI produces a result between 1 and 12. To turn it into a YES or
NO you must test this result againts a fixed number using = (equals) > (greater than) <
(less than) or IN (member of a selection).

More examples:

4 HRU 6 = ;Jupiter rules 4.th house
4 HSI RUL 6 = ;Same result as above
3 PSI RUL 8 = ;Uranus dispositor for Mercury
2 6 ANUM 3 = ;Moon square Jupiter
2 6 ANUM 4 = ;Moon trine Jupiter
1 7 ANUM 1 = ;Sun conjunct Saturn
1 7 AORB ABS
 10 < NOT ;Sun Saturn aspect orb 1 degree

The aspect examples do not care about the order of the aspec-ting planets, so you may
write 2 6 ANUM or 6 2 ANUM as you like.

Note that AORB calculate aspect orbs to one tenth of a degree, so 1 degree=10 units, 2
degrees = 20 units etc. AORB is signed, so you must change it to a positive value
(using ABS) before the test.

For these aspect tests to work, they must be within the orb limits given in the PCA orb
installation and main menu, e.g. pressing key A in Argus to get the aspects, only those
within the defined orb limits will be shown.

14 5 APOW 8 < ;ASC in close aspect to Mars

The APOW (aspect power) rates an aspect from 0 (just at the orb limit) to 10 (exact). So in
this example it must be nine or ten (8 is less than the power) The orb limit is the one, you
entered in the PCA menus. Actually, it is similar to the thickness of the aspect lines in the
drawn chartwheel.

8 PDEG 154 = ;Uranus between 4-00 and 4-59 in Virgo

This may be used for degree astrology. You may also do some arithmetic and find sign,
decanate etc from the PDEG code. It works only in whole degrees, though. Later we will
describe the code PPOS, which is more accurate working in intang units.

NPR BDPR ;Print the natives name and birthdata

NPR prints the name (1 line used), and BDPR the data using 5 lines.

To get more control, another code BDATA will let you print parts of the birthdata only.

ARITHMETICS

The above examples are all very basic single astrological testing rules. The XLI toolkit
provides a number of math functions, so that you may combine rules, count points, planets
etc etc..

COMPARING

> greater than
< less than
= equal
<> not equal
NOT not

In the above examples we have often used the = (equals) sign to test for certain house
numbers or signs. Another example showed the use of < (less than) to see if a power was
above a certain value.

To know if a text paragraph must be printed or not, you need an end result of YES of NO,
not a value. Having found the house number of Jupiter, you will need 12 texts, one for
each house, and each text paragraph must have the Jupiter house tested if it is 1, 2, 3...
etc.

You may ask why >= (greater than or equal) and <= (less than or equal) functions are
missing in the above list. Correct, they are missing. But you may construct them from the
others. For example to test if Jupiters house position is greater than or equal to 7:

6 PHS 7 > NOT ;Jupiters house not less than 7
6 PHS 6 < ;Jupiters house greater than 6
6 PHS 7 <
6 PHS 7 = OR ;Jupiters house greater than or equal to 7

The code NOT changes YES (1) to NO (0) or vice versa.

COMBINING RULES

Say that you wish to test if either the Sun or the Moon is in the tenth house:

1 PHS 10 = ;Sun (1) in house 10
2 PHS 10 = ;Moon (2) in house 10
OR ;either ?

The OR code combines the two conditions (YES/NO results) already done. As usual, you
must have the two results first before you use the OR code.

You could also have asked if the Sun and Moon are BOTH in the 10. house:

1 PHS 10 = ;Sun (1) in house 10
2 PHS 10 = ;Moon (2) in house 10
AND ;both ?

The codes OR and AND combines two rules to "either" and "both".

You may expand the number of conditions by adding lines. Say that you want to test if
Mars is in a mutable sign:

Version 1

5 PSI 3 = ;Mars (5) in Gemini (3)
5 PSI 6 = ;Mars (5) in Virgo (6)
OR ;either
5 PSI 9 = ;Mars (5) in Sagittarius (9)
OR ;either
5 PSI 12 = ;Mars (5) in Pisces (12)
OR ;either

Please note the seemingly uneven placement of OR. The first OR tests "either" in Gemini or
Virgo, the next "either" tests the first result or Sagittarius, and the last test the second
result or Pisces. This must be done, because OR can only test two condi-tions at a time.
You may use other setups, which will produce the same result:

Version 2

5 PSI 3 = ;Mars (5) in Gemini (3)
5 PSI 6 = ;Mars (5) in Virgo (6)
OR ;either
5 PSI 9 = ;Mars (5) in Sagittarius (9)
5 PSI 12 = ;Mars (5) in Pisces (12)
OR ;either
OR ;either

Version 3

5 PSI 3 = ;Mars (5) in Gemini (3)
5 PSI 6 = ;Mars (5) in Virgo (6)
5 PSI 9 = ;Mars (5) in Sagittarius (9)
5 PSI 12 = ;Mars (5) in Pisces (12)
OR ;either Sgr or Psc
OR ;either above or Vir
OR ;either above or Gemini

Please note that in the last version you put 4 conditions on the stack and do the combining
afterwards. Only the last OR will reach down to the bottom and fetch the first (Gemini)
condition.

Remember also, that using a lot of OR's will expand the pro-bability of a final YES, and
using a lot of AND's, your final result will most often be NO.

COMBINING "AND" AND "OR"

Say that you wish to test if both Sun and Moon is in water signs:

1 PSI 4 = ;Sun in Cancer
1 PSI 8 = ;Sun in Scorpio
1 PSI 12 = ;Sun in Pisces
OR OR ;either of above = Sun in water
2 PSI 4 = ;Moon in Cancer
2 PSI 8 = ;Moon in Scorpio
2 PSI 12 = ;Moon in Pisces
OR OR ;either of above = Moon in water
AND ;both Sun in water and Moon in water

TESTING ELEMENTS ETC.

Testing for water signs, mutable signs etc are a bit tedious, because you must test each
single sign. There are a few tricks you may use:

2 PSI 0 4 8 12 IN ;Moon in water

The code IN will check your Moonsign against a set of possibi-lities in one go. The result
of the IN is always YES or NO, so you do not need the equals sign here. There are a few
things to remember using IN:

1) You must ALWAYS start with a zero before the values to test against. The zero works as
a delimiter so that IN can know how many values back in the row to use. So you cannot
use IN to test equal to zero. Luckily signs, houses and planets are numbered 1 upwards.

Please note, that you can not include a zero in the test, the zero being reserved as a data
stop. To test if a value is 4 or 0, you must use a workaround, either test zero separately or
you may in some cases add one to the value before testing, but that will make the code
less readable.

The other trick testing elements is purely mathematical:

4 PSI 4 MOD 1 = ;Venus in fire
4 PSI 4 MOD 2 = ;Venus in earth
4 PSI 4 MOD 3 = ;Venus in air
4 PSI 4 MOD 0 = ;Venus in water

The MOD (modulus) function calculates the remainder of the division with 4, which will be
0,1,2 or 3 then starting over. In fact this will usually be the simplest and most efficient way,
but you may find it less obvious to perceive.

COMPARING TWO CHARTS

PCA have two sets of stored positions for charts, one for radix, and one for all other charts.

If you want the positions of both for comparison, you will need a means of choosing which
of the two memory blocks to access:

Planet 1-18: Latest calculated chart (any kind)
Planet 21-38: Latest calculated radix chart

House 1-12: Latest calculated chart (any kind)
House 21-32: Latest calculated radix chart

As you can see, you just add 20 to the planet number to get the radix. So if latest
calculation was for example a progressed chart, the progressed Moon will have number 2,
and the radix Moon will have number 22.

The following examples show which codes this will work for assuming a progressed chart
as the latest calculation:

34 PSI 5 = ;Radix ASC (34) in Leo (5)
14 PSI 5 = ;Progressed ASC (14) in Leo (5)
29 PHS 8 = ;Radix Neptune in 8. radix house
9 PHS 8 = ;Progressed Neptune in 8. progressed house
6 HSI 4 = ;6th progressed house cusp in Cancer
26 HSI 4 = ;6th radix house cusp in Cancer
11 PDEG 316 = ;Progressed Moon's node between 16.00-16.59 Aqr
27 RX ;Radix Saturn retrograde
7 RX ;Progressed Saturn retrograde
23 HRU 5 = ;Mars rules radix 3rd house
3 HRU 5 = ;Mars rules progressed 3rd house
2 33 ANUM 2 = ;Progressed Moon opp. radix MC
2 13 ANUM 2 = ;Progressed Moon opp. Progressed MC
1 5 AORB
ABS 20 > ;Progr. Sun aspect Progr. Mars orb<2 deg.
1 25 AORB
 ABS 20 > ;Progr. Sun aspect radix Mars orb<2 deg.
21 25 AORB
ABS 20 > ;radix Sun aspect radix Mars orb<2 deg.
1 21 APOW
10 = ;Progr. Sun aspect radix Sun exact

Further this planet numbering will work on the more advanced codes PPOS, HPOS, PV and
HV. One example will be given here though. When comparing charts, it is often important

to test which PROGRESSED house a RADIX planet is in and vice versa. So even if we do
not explain it in detail, here are some coding examples for this problem:

24 PPOS
2 BHUS 4 = ;radix Venus in progr. 4th house
4 PPOS
1 BHUS 6 = ;progr. Venus in radix 6th house
31 PPOS
2 BHUS 1 = ;radix node in progr. 1st house

As you can see, you must use two codes: PPOS and BHUS. The first number is the planet
(using the expanded numbering), and the second number between the two codes is 1 for
radix house and 2 for progressed house.

This may of course be used for synastry as well, if the latest calculation was a 2.nd radix
(option T in the PCA main menu). Then the above lines would mean e.g. "John's Venus in
Susan's 4th house", "Susan's Venus in John's 6th house" etc.

COUNTING, LOOPING AND BRANCHING

FOR start of FOR-loop
CNT get FOR-loop counter
NEXT end of FOR-loop
XIF exit FOR-loop prematurely
ENDIF End of if-clause
IF Start of if-clause
ELSE Alternative part of if-clause
NFN set file branch index
WAIT withhold heading
CONT skip withhold

You will often need to repeat the same operation a number of times. For example, you may
wish to count the number of planets in water signs. This could of course be done the hard
way:

1 PSI 0 4 8 12 IN
2 PSI 0 4 8 12 IN ADD
3 PSI 0 4 8 12 IN ADD
4 PSI 0 4 8 12 IN ADD
5 PSI 0 4 8 12 IN ADD
6 PSI 0 4 8 12 IN ADD
7 PSI 0 4 8 12 IN ADD
8 PSI 0 4 8 12 IN ADD
9 PSI 0 4 8 12 IN ADD
10 PSI 0 4 8 12 IN ADD

For each line coming out TRUE (1) the result will be incremented. Now if you start putting
a null result (on the stack) and add the others, you'll get this slightly changed setup:

0

1 PSI 0 4 8 12 IN ADD
2 PSI 0 4 8 12 IN ADD
3 PSI 0 4 8 12 IN ADD
4 PSI 0 4 8 12 IN ADD
5 PSI 0 4 8 12 IN ADD
6 PSI 0 4 8 12 IN ADD
7 PSI 0 4 8 12 IN ADD
8 PSI 0 4 8 12 IN ADD
9 PSI 0 4 8 12 IN ADD
10 PSI 0 4 8 12 IN ADD

Now you have ten lines, with nearly the same coding, exept for the first number which
increments one for each line, i.e. counts from 1 to 10.

You may setup a COUNTING LOOP to do this job more elegantly:

0
1 10 FOR
1 CNT PSI 0 4 8 12 IN ADD
NEXT

The 10 lines are now replaced by just one line using a counter for the planet number. To
make the counter count, these two lines were added:

1 10 FOR ;starts the counting loop
NEXT ;loops back until end of count

The line(s) in between will go into action 10 times. The 1 CNT will use the incrementing
count value (1-10). The end result will be exactly the same as in the first example, not
using a counter. It will not process faster though, actually rather slightly slower, but it saves
you a lot of coding.

Counting loops may count up (1 10 FOR) or down (10 1 FOR), you may also count using
negative values (-7 8 FOR). You may easily put the NEXT code several paragraphs
further on, so that a lot of paragraphs will execute inside the loop. It only has to be in the
same file. For example:

$
1 3 FOR
1 CNT NUMS

This is line #
$
NEXT

$

This will print the following:

This is line 1

This is line 2
This is line 3

The NEXT code is here placed in the following paragraph, so that the text will be printed for
each count. Don't worry too much about the NUMS code. This is used to print the counter
and will be discussed later.

You may setup several (up to 10) counting loops inside each other. For example, if you
wish to count the aspects from all planets to all planets, you will need two planet counters:
The first should count from Sun to Neptune, the next should count from the current first
counter to Pluto. If this is not immedi-ately clear, try to setup a table: Sun-Moon, Sun-
Mercury,.... Neptune-Pluto , and check the changing planet numbers.

This example will count the squares in the chart:

0 ;no squares
1 9 FOR ;outer loop
1 CNT 10 FOR ;inner loop
1 CNT 2 CNT ;planet 1 and planet 2
ANUM ;aspect number
3 = ;is it a square
NEXT ;end inner loop
NEXT ;end outer loop

Note, that 1 CNT is the first counter, 2 CNT is the second counter. They are numbered in
the succession they are created, i.e. the outermost counter will be number 1, and in this
example 2 CNT will be the innermost. When using "nested FOR--loops", that is several
loops inside each other, be well aware which counters you are using.

Counting loops are used extensively in the XLI user modules.

IF-ENDIF

Sometimes you must have something calculated or written out, only on a certain condition.
Say for instance, that you are setting up a counting loop for the 10 planets and the two
angles MC and ASC. So counting from 1-14, you wish to skip the Moon's node (11) and
the part of fortune (12). The solution is:

1 14 FOR ;setup complete coung
1 CNT
0 11 12 IN
NOT IF ;check range
.... ;your code here
ENDIF
NEXT

The dotted line should be replaced by your aspect tests or whatever. The range check first
looks if the loop counter is equal to 11 or 12, then reverses this condition to "not equal" to
11 or 12. If the latter is the case the following lines will be executed, if the counter in fact
equals the unwanted values, the lines will be skipped until the ENDIF code.

If you have programmed in other langauges, you may look for an ELSE code, so that you
may add other lines of code executing for the node and the part of fortune. There is also
an ELSE code in XLI:

1 14 FOR ;setup complete coung
1 CNT
0 11 12 IN
NOT ;check range
1 DUP IF ;IF not 11 or 12
.... ;your code here
ELSE
... ;your code here
ENDIF
NEXT

The ENDIF doesn't have to be placed in the same paragraph, but must be within the same
file.

You may have several IF-ENDIF constructions within each other (nested):

IF
IF
IF
ENDIF
ENDIF
ENDIF

Warning: There must be exactly the same number of ENDIF's as IF's. The first IF
corresponds to the last ENDIF etc. Sometimes a module seem to stop working somewhere
in the middle because of a missing ENDIF.

Warning: Often you will mix FOR-NEXT loops and IF-ENDIF con-structions. But never
make them overlap:

Okay: FOR IF ENDIF NEXT
Bad: FOR IF NEXT ENDIF
Okay: IF FOR NEXT ENDIF
Bad: I FOR ENDIF NEXT

There is a special code XIF to exit a FOR-NEXT loop prematurely on a certain condition.
An example of this is given in the section of creating menus, and in the example of listing
graphic transits.

FURTHER ARITHMETIC

Math:
BOO integer to boolean
ABS absolute value
CHS change sign
ADD add
SUB subtract
MUL multiply
MULT multiply by fraction
DIV divide
MOD modulus
DIVR divide with remainder
MAX take maximum of two values
MIN take minimum of two values

Stack:
DUP duplicate value on stack
FETCH fetch value on stack
ZZO set zero offset on stack
GET get number on stack (fixed offset)
PUT put number to stack (fixed offset)
XY exchange numbers on stack
INC increment stack pointer
DEC decrement stack pointer

As soon as you wish to do something more than just simple tests and counts, you will
need to perform calculations. We will only comment a few of the math and stack functions
here. If you need something, look at the list and refer to the FUNCTION REFERENCE for
a specification how to use any of these functions if you think it will serve your needs.

What we will do here is to mention some common problems and how to solve them.

CHANGING INTANG UNITS TO DEGREES MINUTES AND SIGN

A number of the advanced astrological functions produce results in intang units. We will
show how to print such values in a readable format:

3 PPOS ;Mercury position (intang)
ITOM ;convert to minutes of arc
1800 DIVR ;convert to sign and minutes
1 ADD ;renumber signs to start with 1
XY ;exchange sign and remaining minutes
60 DIVR ;convert minutes to degrees and minutes
NUMS ;prepare printout

Position is degrees: ## Minutes: ## Sign no.: ##

The NUMS will print the total 3 results produced by the calculation in the text field shown.
For each template (##) the last result on the stack will be removed and printed. Therefore
the results must be calculated in reverse order (the first number to print must be calculated
last).

Now to the arithmetics: The DIVR produces two results: the remainder and the quotient of
the division. Say, that you have a position of 9-28 Leo. This is 7768 minutes total. So we
will repeat the calculation with this example showing the stack values:

3 PPOS ; 23569
ITOM ; 7768
1800 DIVR ; 4 568
1 ADD ; 5 568
XY ; 568 5
60 DIVR ; 9 28 5

The result(s) are thus 9 28 5 which can then be printed using the NUMS code.

As you can see from for example 568 60 DIVR, that the remainder (28) is calculated
first, then the quotient (9) is placed on top. The sign number remains untouched beneath
the following calculations and results.

It may be necessary for you to draw a sketch of the stack as shown above to be sure, that
you get it right. You may test your coding on screen by adding the DEBUG code, then
calling your test module from PCA. DEBUG will then display you the actions on the stack
step by step as shown above.

MULT - SCALING YOUR VALUES:

The integer arithmetic in XLI have certain serious limitations.

Say for instance, that you wish to change minutes of arc back to intang. No function in the
XLI provides this facility. What you really need is to divide your minutes with 21600 and
multiply by 65536.

But dividing by 21600 will produce 0 instead of a decimal number between 0 and 1. And if
you try to multiplying with 65536, you will get a serious overflow problem, because the
integers do not range further than 32767. You may reduce the fraction, e.g. using a quarter
circle instead: multiply by 16384 and dividing by 5400.

The MULT code lets you multiply and divide in one go, keeping the highest accuracy
possible:

16384 5400 MULT

You cannot write 65536 21600 MULT, because the number 65536 does not exist in the
XLI, the allowable range is -32768 to +32767.

You will often need this code if you plot graphs. The XLI can turn the system into graphics
mode and draw instead of print. Positioning the drawing pen will often need scaling.

MAX AND MIN

Say that you calculate element strength, and wish the result to be within certain limits, for
example -99 to 99, so that the value -99 means -99 or less, and the value 99 means that
the value is 99 or more. After having calculated your points, the following coding will do
just that:

-99 MAX 99 MIN

Another use may be to find the strongest of a number of rangings. Say that you have
calculated points for the four ele-ments and put them into the storage cells 1-4.

One question may then be: what is the strongest element power. The answer is produced
by the following coding:

1 RCL 2 RCL MAX 3 RCL MAX 4 RCL MAX

Another question may be: Which element is strongest?

1 ;assume fire
1 4 FOR ;setup counting loop
1 CNT RCL ;get current element
2 DUP RCL ;get strongest found till yet
< IF ;if the current is stronger
DEC 1 CNT ;exchange with current count
ENDIF ;end condition
NEXT ;end loop

The result will be in the range 1-4 (fire-water). If the strongest point score is shared by
more elements, the first of these is chosen by the routine.

Note the code DEC. This will dispose the current result. So the construction DEC 1 CNT
removes the till yet strongest element number and inserts the current instead.

POWERCONTROLLING ARGUS

MEGET get value from main menu
MEPUT put value to main menu
NPUT put name to main menu
PSTAT enable or suppress all output
FUNX call single PCA main menu option
CML execute defined macro (destructive)
CALL call defined macro (non-destructive)

One of the strong features of the XLI interpreter is, that PCA may be operated by a file
instead of interactively by you.

Even without XLI you have the macros, which can execute complex tasks from one
keypress. A macro can also call the XLI interpreter.

But the XLI interpreter can also in turn set up its own macros and run them. You are not
allowed though to let the XLI use a macro to call XLI once more, that will not work.

Ultimately you could have another program running, which created a PCA XLI file, started
PCA automatically to calculate planets, ephemerides, charts, chartwheels etc, storing the
results on disk, and finally returning to the calling program, which could then pick up the
files and retreive the results.

There are two codes calling commandlines. The CALL is normally the one to go for. It will
execute immediately.

The other call is CML. This is not as useful as CALL. It will in fact replace an existing macro
with a new one, and it will not execute until after the XLI module has finished. So say you
inserted first a CML and then a CALL in your XLI file. The CALL would (surprise) execute
first, leaving CML sleeping and undisturbed. When the XLI module finish, the CML will then
continue. But remember, that CML will destroy any previous macro.

The calls are coded like this:

$
CALL

RAV
$

Note that the macro itself is put into the text field of the paragraph, not in the coding. It has
to be the first line in the text field. Normally, you should not put real printable text into such
a paragraph.

CONTROLLING OUTPUT

Running complex jobs, you may not always need everything printed on the screen. For
example, you may need the positions for a radix and a progressed chart for further
calculations and display. This could for example be done like this:

$
CALL

R1T.P1R.
$

This will run the radix using the current menu data, then get todays date from the internal
clock (1T.), run the progressed and finally restore the radix time (1R.). But say, that you

have some display or print running in your XLI module, that you would not like to be
disturbed by the printout of those two charts. The answer is simple:

$
CALL

(R)1T.(P)1R.
$

Just put parenthesis around the calculations, you do not wish to have displayed or printed.

MANIPULATING MENU INPUT DATA

You may directly access the input data in the PCA main menu. This is done by the MEGET
and MEPUT codes. Every bit of birth data in the input menu has a number, for example:

0 MEGET ;fetch day
1 MEGET ;fetch month
2 MEGET ;fetch year
3 MEGET ;fetch BC flag

A complete list is given in the function reference. You may then have the XLI input its own
data, run charts etc. Say for instance, that you would like to do the progressed chart for 5
years onwards from the current:

$
0 19 FOR ;save the current menu data
1 CNT MEGET ;get an item
1 CNT STO ;store in memory cell
NEXT
CALL ;call (invisibly) radix, then enter current time

(R)1T.
$
2 MEGET ;current year
1 DUP 4 ADD ;end year
FOR ;count the five years
1 CNT MEPUT ;insert the year
CALL ;show progressed chart

P
$
NEXT ;loop back
0 19 FOR ;restore the original data
1 CNT RCL ;fetch from memory cell
1 CNT MEPUT ;put back to menu
NEXT

$$$

Here we have used another method of saving and restoring the original menu data. Of
course, in this case you could as well just have called a macro of 1R, which would have
restored the data of the last radix. But in other cases, for example, if you wish to run other
radixes in between, you must use this more safe method. Even this method may not work,
however, if you interrupt the XLI prematurely pressing ESC and returns to human control
before the module has finished.

Name insertion into the input menu can be done using a macro call:

$
CALL

0BEVERLY.
$

...to insert the name BEVERLY, but if the name is manipulated using the string handling
routines the NPUT code can be used for inserting a name from the string array. See the
section of string handling and refer to the function reference for the use of NPUT.

The sex field is accessed through 7 MEPUT/7 MEGET.

The house system cannot be accessed through MEGET and MEPUT. You must use the
macro method.

GRAPHIC TRANSITS

NDATE convert graphic transits sector to date
GTR call user defined graphic transit
RTA reset transit aspect list
NTA get next transit aspect

If you like the graphic transit facility, you may setup other versions with special features
using the GTR code. You'll find a description of this in the function reference.

Any kind of graphic transits will save the aspects found to memory. These may then be
retreived, analysed, displayed or interpreted by an XLI module. The aspects can be
retreived one by one in the succession, they appear. For each aspect, the start and end
time (approximately), planet numbers and aspect type is available.

This example will print out the aspects:

$
2 CARY

,Sun,Moo,Mer,Ven,Mar,Jup,Sat,Ura,Nep,Plu,Nod,Ptf,MC,ASC
,Cnj,Opp,Sqr,Tri,Sex,ssq,ses,qqx,ssx,
$
1

No From To Aspect:
--
$
RTA ;reset aspect retrieve counter
1 10000 FOR ;loop all aspects
NTA ;get next aspect
1 DUP NOT XIF ;exit if last one
4 FETCH 20 MOD;get radix planet and adjust planet number
5 FETCH ;get aspect number
15 ADD ;adjust to aspect name index above
5 FETCH ;get transit planet (number no change)
5 FETCH NDATE ;convert end sector to date
7 FETCH NDATE ;convert start sector to date
1 CNT ;fetch overall counter
NUMS ;display all values

@@@ @@@ @@@
$
NEXT
1

--
$$$

The first lines are defining the planet and aspect names for printout purposes.

The stipulated lines are always printed, so the coding for this is just 1 (YES).

The 1 10000 FOR is not counting 10000, it is just to be sure to have enough looping
power. The XIF will exit at the last aspect.

The RTA resets the aspect pointer, so that the next one retrie-ved will be the first.

The NTA will get one aspect off the queue. Now a lot of FETCH codes are used. That is
because the results must appear in the correct succession for printout, and some of them
must be adjusted.

Here is a breakdown of the result stack to show, what happens:

NTA sect1 sect2 radx tran asp
4 FETCH tran sect1 sect2 radx asp
20 MOD tran20 sect1 sect2 radx asp

5 FETCH asp tran20 sect1 sect2 radx
15 ADD asp15 tran20 sect1 sect2 radx
5 FETCH radx asp15 tran20 sect1 sect2
5 FETCH sect2 radx asp15 tran20 sect1
NDATE d2 m2 y2 radx asp15 tran20 sect1
7 FETCH sect1 d2 m2 y2 radx asp15 tran20
NDATE d1 m1 y1 d2 m2 y2 radx asp15 tran20
1 CNT cnt d1 m1 y1 d2 m2 y2 radx asp15 tran20

The names for the result values are quite abbreviated. If you are in doubt what they mean,
look at the explanation of the coding above, and if needed refer to the definitions in the
function reference part.

This works also with the collective transits, so you may use the above to setup a collective
transit list.

Aspects, that repeat during the period will be listed several times. The transit interpretation
skeleton has a mechanism for avoiding repetition. The method is quite complex, so don't
try to analyze the code, unless you need a real challenge.

SETTING UP YOUR OWN MENUS

The following simple menu is a leftover from DOS days where you had only keyboard, no
mouse.

MENU setup screen menu
OPT wait for keypress from defined set
WKEY wait for keypress
XIF exit loop

The ability to setup choice menus means, that you could expand the PCA into a really
huge program with a limitless number of choices. The toolkit itself adds the two menus:
The user-module menu (XS, file TTUS.XLI) and the interpretation brancher menu (OI, file
TTFLET.TXT).

You may continue this menu-branching as much as you wish, and all the branching will be
programmable using the macros.

NOTE: There is one limitation: You cannot use the CALL code to make XLI call other XLI
modules. This would overload the XLI interpreter. But you may use the CML code, which
executes the macro only AFTER the current module has finished.

Here is a very simple example of a menu choosing between two further XLI modules, A
and B:

$
MENU

A select module A

B select module B
X back to PCA main menu
$
0 88 66 65 OPT NFN

$$$
A.XLI
B.XLI

The MENU code opens a dialog in the middle of the screen. You may write anything in the
text part, it works only as a reminder of the possible keypresses.

Only the keypresses defined in the list before the OPT code are accepted. The 0 value in
the start of the line MUST be present, and just works as a delimiter telling where the list
starts. The following values until the OPT code are the numbers of the valid keys. A has
number 65, B has number 66 and X has number 88 (the ASCII numbers of the key
symbols).

The branching itself is obtained by the NFN code. The result of OPT is 1,2,3,... etc
depending on the key codes' position in the list. NFN will preset the branch file pointer to
1st, 2nd, 3rd... filename after the $$$ line.

Please note that there is no filename for choice X. This should have been inserted after
B.XLI, but is left blank. When XLI finds a blank filename to branch to, it returns to the main
menu.

You do not necessarily need file branching to select different things. You could also have
checked the OPT result with IF-ENDIF constructions.

$
0 66 65 OPT
1 DUP ;duplicate choice result
1 = IF
1 3 CONFX
ENDIF ;If A pressed, set degrees ON
2 = IF
0 3 CONFX
ENDIF ;If B pressed, set degrees OFF

$$$

The option result is duplicated for two tests, result=1 or result=2. If you need to expand the
number of tests, you must add one (1 DUP) duplication before each test line except the
last, to keep one copy of the result available.

NOTE: This is a very primitive menu developed for DOS. With Argus, you can use MENUX
to create more interesting menus with buttons and mouse clicks.

DISPLAYING CHOICES IN THE MENU

The MENU mechanism is not elaborate enough to let you enter values or strings, but you
may enter choices and have them displayed.

The following examples demonstrates the use of MENU

$
1 CARY ;define the strings to display in the menu

,>,
$
0 5 CONFX
1 DUP 5 CONFX ;get the system variable
0 STO
1 10000 FOR ;setup "endless" loop
0 RCL 2 = ;National
0 RCL 1 = ;Latin
0 RCL 0 = ;Symbols
NUMS ;display strings
MENU ;start the menu

@S Symbols
@L Latin abbreviations
@N National abbreviations
X SAVE and EXIT

$
0 27 78 76 83 13 88 ;get option from keyboard ESC S L N CR/x X
OPT
1 DUP
0 1 2 6 IN
XIF ;exit loop if key 3 pressed
3 SUB 0 STO ;save selected option (0-3)
NEXT ;loop back
0 RCL 5 CONFX ;set the system variable to chosen value
$$$

The @ fields in the menu will display one of the strings defined by the CARY code in the
start, These strings are simply:

string 0: a space” ”
string 1: an marker ”>”

So in the menu displayed, the chosen option will have a ”>” before the letter.

Pressing one of the three keys S, L or N on the keyboard will change the choice and loop
back showing the menu once more with the new choice.

Two more options are included in OPT, that is 13 and 88 whic are the keys ENTER and X,
which will both exit the loop and save the new system variable.

Clicking the x in the top-right corner of the menu windows with the mouse will make OPT
return the value 2, which in this setup equals the ENTER key choice

This is another example using the same technique to input a number. The MENU
mechanism is not really suited for that job, but as you'll see, even if it is clumsy, it works:

$
0 0 STO ;reset input number to 0

$
1 10000 FOR ;setup endless loop
0 RCL ;current number to display
NUMS ;prepare number display
MENU ;setup as menu

ENTER NUMBER: #########
$
0 13 ;accept ENTER
57 56 55 54 53 52 51 50 49 48 ;and digit keys
OPT ;get key
1 SUB ;set range to 0-9 (ENTER=10)
1 DUP 10 = XIF;exit if ENTER pressed
0 RCL
3275 > IF ;avoid number overflow
0 RCL 10 MUL ;shift one digit left
ADD ;add new digit
0 STO
ENDIF ;store new value back
NEXT ;end loop

$
0 RCL ;display end result
NUMS

RESULT: #########
$$$

You could prune this a bit by adding a test for the backspace key to remove one digit, the
minus key to change sign (in which case you should expand the range test to avoide

negative overflow) etc. It should in theory also be possible to change the coding to input
strings using the string array and string handling functions.

Setting up menus with frames and things will make your XLI module look much more
professional, even if it does not produce smart mouse-driven pop-up and pull-down menus
in colours. The examples and modules in this toolkit are kept very basic, to make them
easier to understand.

PRINTING VARIABLE STRINGS AND NUMBERS

NUMS display numbers and strings

We have often in the foregoing seen the NUMS code used to print values or names of
planets, aspects etc. inserted in the text field.

The text field of the paragraph will normally be fixed, that is, you decide exactly, how it is
going to appear, and one printout of the same paragraph will look identical to the next.
Used for ordinary interpretation, the text fields are varied from chart to chart only by their
succession.

The exception is the variable insertion. A variable is a number or bit of text (a string) which
may change depending on for instance the chart. You may for example have printout of the
planetary positions. The planet names will be fixed, but the degrees, minutes and sign
name will vary.

Jupiter ## ## @@@

Saturn ## ## @@@

The letters will appear as they are, but the ## and @@@ fields are TEMPLATES, that will
change according to the current results on the stack.

Templates are of two kinds: numeric templates: #### and string (text) templates: @@@@.
You enter a template as a continuous row of #- or @- characters.

You may think of the template as a window or "hole" in the screen or paper, where you can
see the current value of changing numbers or text strings.

To use the templates, you must place the code NUMS somewhere in the coding for that
paragraph. The coding itself must provide the numbers or strings you wish to display. If the
coding produces the result 3, then a #### template in the text will display the number 3,
and alternatively @@@@ will display string number 3. Text strings have numbers, which will
be explained later.

You may display up till 64 values/strings in one paragraph. You must calculate as many
numbers, as you put templates into the text field.

Your coding must provide the numbers you need in reverse order, the first template will
display the last value put on the stack

A very simple example:

$
2 MEGET ;fetch PCA main menu year
1 MEGET ;month
0 MEGET ;and date

Day: ## Month: ## Year: ####
$

If the menu date is 23th sep 1944, this paragraph would display:

Day: 23 Month: 9 Year: 1944

The size of the templates must be big enough to hold all the digits possible. If there are
less digits, blanks will be inserted (september is displayed blank-9),

If there are more digits than the template can hold, you will only see the last ones . So if
you prefer having 1-digit months displayed with a leading zero, you could add 100 (1
MEGET 100 ADD) and keep the template to ##, which will cut of the leading ”1”.

We will repeat the same example with the string template used for the month, so that
month will appear by name, not by number:

$
1 CARY

,jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec
$
2 MEGET ;fetch PCA main menu year
1 MEGET ;month
0 MEGET ;and date

Day: ## Month: @@@ Year: ####
$

The first paragraph defines a numbered row (ARRAY) of text strings, so that we can use
the usual month numbers. The comma in the start means, that there is no month number
zero.

You may place the three templates in the above example close together:

Date: ##@@@####

producing something like 23sep1944.

Of course you cannot do the same with the numbered month version unless you insert
spaces, slashes or dots between the three templates

EXAMPLE - EPHEMERIS GENERATOR

(A complete example of printing planetary positions)

The following example is the ephemeris generator included in the Argus distribution, here
with comments:

The first line defines the month abbreviations. Signs and planets are predefined strings in
Argus. But we will also need the weekay names to make the output more readable.

The PTMP code makes the module tidy up when finished. It manipulates the input data on
the go, and without the PTMP code, you will find the input date changed showing the last
date in the printout. You would probably prefer it left as it was.

$
PTMP
2 CARY

ar,ta,ge,cn,le,vi,li,sc,sg,ca,aq,ps
Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Okt,Nov,Dec
$

The next codes enter time into the menu, so that you will get the positions for Noon. The
zone in the Argus module is left as is, so you can print an ephemeris for noon for any
country. Here the lines setting zone to zero will force the output to GMT noon.

$
12 4 MEPUT ;hours=12
0 5 MEPUT ;minutes=0
0 6 MEPUT ;seconds=0
0 8 MEPUT ;zone hours =0
0 9 MEPUT ;zone minutes =0

------------EPHEMERIS of planetary positions--------------

The counting loop below counts only one month. You could set it to 12 months as shown in
the second line which here is “commented out” i.e. the leading semicolon makes it a non-
functional comment.

$
1 MEGET
1 MEGET
FOR ;simple one-month version
;12 ADD FOR ;12 months variant
2 MEGET ;year
1 CNT ;month
NUMS ;display

@@@ #### Su Mo Mer Ven Mar Jup Sat Ura Nep Plu
$
80 TABLN

NUMS ;80 wide horizontal line

$
1 PAD ;make string templates widths fixed as given
1 31 FOR ;day-in-month counter (inner counter)
1 CNT 1 MEPUT ;set the input month (outer counter)
2 CNT 0 STO
0 MEPUT ;set the input date after storing it
DNORM ;this will handle month overflow:

The DNORM is nice, so you can avoid invalid dates, for example apr 31th or feb 30th. In
such cases the month is incremented and the day changed accordingly, e.g. april 31th to
May 1st

If you would like the ephemeris to stop at the last day of month instead of always printing
31 days, you would need to check if DNORM changed the month with something like:

1 MEGET DNORM 1 MEGET <> XIF

to exit the day counting loop in case of new month.

$ Get day of week

JD ;Julian Day 10000ths ones 7 and 4digit fraction
DIVR DEC ;modulus of 10000ths
4 MUL
XY ADD
XY 4999 < ADD ;if fraction >0.5 add one
1 ADD 7 MOD
1 STO ;final weekday result
13 ADD ;start of weekday names table
0 MEGET ;day of month
NUMS ;display with a continuation line mark (\)

##@@ \
$

1 11 FOR ;innermost loop to count planets Sun-Node

3 CNT
12 MOD PLA ;calculate planet from current input values
XY DEC ;remove velocity from result
ITOM ;convert intang position to minutes of arc
1800 DIVR ;divide into sign (0-11) and remaining minutes
1 ADD SNAME ;change sign to (1-12) and get sign name index
XY 60 DIVR ;divide remainder into degrees and minutes

XY 100 ADD XY ;Trick to display single digit with leading zero
NUMS ;display degrees minutes and sign

##\
##@ \
$
NEXT ;next planet
1 ;terminate with a linefeed (blank line)

$
1 RCL 0 = IF ;if sunday, output as horizontal line
80 TABLN

$
ENDIF
NEXT ;next day
1
80 TABLN ;end of month horizontal line

$
NEXT ;next month
80 TABLN ;end of table horizontal line
1

$$$

You may change this structure to your personal needs: a Moonphase ephemeris, Hindu
positions, local noon positions etc.

STRING MANIPULATION

CARY define string array
NAME get current name into string array
PLACE get current place into string array
STDEF define one string in string array
STCAT concatenate strings
STCMP compare strings
STCUT cut slice of string
STLEN return string length
STPOS find position of substrin
STCHR manipulate single character in strin

The XLI interpreter has a couple of string handling functions, even if it's not a full blown
string handling system. You cannot write your own wordprocessor using XLI!

Strings are numbered from zero upwards. You may create many thousands of strings only
limited by computer memory.

To define strings, you may use CARY to create a whole list from zero and up, or you may
use STDEF to create a single numbered string.

The string(s) are entered in the text part of a paragraph. You write 1 CARY if you have
one line of string definitions, 2 CARY if you have 2 lines etc. You decide for yourself how
many lines you wish to use. You could just as well have defined the months like this:

$
5 CARY

,jan,feb
mar,apr,may
jun,jul,aug
sep,oct,nov
dec

$

The above defines strings number 0-12. String zero ist just empty. All earlier defined
strings are erased by CARY.

If you wish to define or redefine for example string 12, use the code STDEF istead of
CARY:

$
12 STDEF

dez
$

This will redefine string 12 from dec to dez.

The CARY code is used in many of the utility modules in Argus..

There are a number of other string handling: you may cut, join or compare strings. You'll
find more information in the function reference part.

GRAPHICS

GRON switch to graphics mode
GROFF switch back to text mode

GRCOL set graphics colour
PENUP lift pen
DRAW draw line
DFAT draw fat line
DRSYM draw defined symbol

Graphics look pretty, and a lot of modern software puts its heavy sales arguments on
graphic features.

To understand this chapter, you must know, that output may be produced in two quite
different modes: text or graphic.

Text output is using a very limited number of letters, digits and other symbols: the
character set, which has 256 members. This allows for compact data and fast screen,
printer and file handling. An ordinary book may be stored in text mode in say 400 KB of
memory. If it was to be stored in graphics in laser print quality, the 400 KB would not even
hold a single page.

The Argus output pages can hold a mixture of text and graphics. Graphics are defined as a
frame floating with the text.

The Argus graphics (normally used for just the chartwheel) will normally fill out 60-90 % of
the page width depending on the setting in the print-layout preferences.Further it will not fit
into a text line, but always use a number of lines by itself. So even if your preferences say
20% of page width for chartwheel, any graphics, you create will not accept text to the left
or right of the graph but take up a couple of lines by itself.

Still, you will be able to manually move graphics around, resize them by width and height
and move them to fit into a text line or place several graphs horizontally side by side. But
that cannot be scripted in XLI.

The most interesting module is the graphic ephemeris. It has a number of other interesting
XLI features, so we will go through it in detail:

THE GRAPHEPH MODULE:

;XLI Graphic Ephemeris utility module

First the month names are set up as strings. All text drawn in graphics mode must be
defined as text strings:

$
1 CARY

,Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec
$

Saving the menu values have been discussed earlier. To calculate planets, we need only
to change the date and time. So only the first 8 positions in the menu are saved. The

memory cells used for this are cell 100-107. Alternatively, you may use the PTMP code in
the start, which will also restore the input menu contents.

Writing modules, you should keep a good record of the use of memory cells, so you do not
overwrite important information, and so that you can easily find the information, you need.

$
0 7 FOR ;save menu values
1 CNT MEGET
1 CNT 100 ADD STO
NEXT

$

Next part inserts time. You could also instead have done a CALL with a macro of 212.
(mimicing press 2 for time, then 12 for noon and a full stop for data end)

$
12 4 MEPUT ;init time to noon
0 5 MEPUT
0 6 MEPUT

$

;SET USER CONSTANTS
;------------------

If you later on wish to change the appearance of the graph, it is a very good idea to have
the values saved in memory cells like this instead of putting the values directly into all the
different places, where you need them. Here they can be easily found and changed. You
could even later expand the module with a menu giving you different choices:
$
1024 10 STO ;set frame width (max 1024)
600 11 STO ;set frame height (max 974)
1 12 STO ;first planet to display (1=Sun)
11 13 STO ;last planet to display (11=Node)
2 15 STO ;horizontal grid option 0,1 or 2
1 16 STO ;vertical grid option 0 or 1

$

Now use GRON to change the output to graphics mode. The 3 GRCOL chooses the colour
for the following draw. Colour 3 is the graph foreground chosen in the PCA colour
installation menu, which is normally used to print degrees and circles in the chartwheel.

$
GRON ;open a graphics fram
3 GRCOL

$

The next part will draw the outer frame using the stored width and height values. The
coordinates are negative (CHS) or positive, because the origin is in the middle of the
screen or print area.
The DFAT code draws not just one line, but a series of parallel lines. 3 2 DFAT means:
draw 3 lines with a mutual distance of 2 dot units. You could also use the code PENW to
draw solid thick lines
10 RCL CHS 11 RCL CHS 10 RCL CHS 11 RCL 3 2 DFAT
10 RCL CHS 11 RCL 10 RCL 11 RCL 3 2 DFAT
10 RCL 11 RCL 10 RCL 11 RCL CHS 3 2 DFAT
10 RCL 11 RCL CHS 10 RCL CHS 11 RCL CHS 3 2 DFAT

$

The next three paragraphs draw the grid. The colours are the ones chosen for angles and
houses in the PCA color preferences.

$
15 RCL 0 < IF
4 GRCOL ;draw horz. 5 degree lines
11 RCL 15 DIV
0 STO ;heigth of one degree
-2 2 FOR ;5 lines total
10 RCL CHS ;horizontal start (x1)
1 CNT 5 MUL
0 RCL MUL ;vertical start (y1)
2 DUP CHS ;horizontal end (x2=-x1)
2 DUP ;vertical end (y2=y1)
1 2 DFAT ;draw one line
NEXT ;repeat for all 5 lines
ENDIF

$
15 RCL 1 < IF
5 GRCOL ;draw horz. 1 degree lines
-14 14 FOR ;29 lines total
1 CNT ABS
5 MOD 0 = ;is it a 5-degree line
NOT IF ;draw if not
10 RCL CHS ;horizontal start (x1)
1 CNT
0 RCL MUL ;vertical start (y1)
2 DUP CHS ;horizontal end (x2=-x1)
2 DUP ;vertical end (y2=y1)
1 2 DFAT ;draw
ENDIF

NEXT
ENDIF

$
16 RCL
0 < IF
4 GRCOL ;draw vert. month lines
10 RCL 6 DIV
0 STO ;width of one month
-5 5 FOR ;11 lines total
1 CNT
0 RCL MUL ;horizontal start (x1)
11 RCL CHS ;vertical start (y1)
2 DUP ;horizontal end (x2=x1)
2 DUP CHS ;vertical end (y2=-y1)
1 2 DFAT ;draw
NEXT
ENDIF

$

Now the names of the months defined earlier with the CARY code are drawn. To do this,
the code DRTXT is used.

$
1 12 FOR ;Draw month names
1 CNT ;string number
0 ;rotation=0=vertical
50 ;size
1 CNT 7 SUB ;x-position -6 to 5
0 RCL MUL ;use stored month line scaling
0 RCL 4 DIV
ADD ;move a little right
11 RCL 50 ADD ;place text 50 units above frame
DRTXT ;draw month name
NEXT

$

Next comes the planet movement curves. Included are the 10 planets and the Moon's
node, if you did not change the constants in cell 12 and 13.

; DRAW PLANETARY MOVEMENTS
;--------------------------
$
10 RCL 30 DIV
0 STO ;x-step=width/30
12 RCL 13 RCL

FOR ;count planets
1 CNT 2 =
NOT IF ;exclude Moon (too fast)

$

This sets the colour of the planet as defined in the colour installation menu. Planet colours
start at no. 17.

$
1 CNT 17 ADD
GRCOL ;set planet colour

$

Counting the year goes in steps of two days. The counter moves from 0 to 180 in steps of
one, so this must be multiplied by two and have add one to get the date. This result is
entered into the input menu using MEPUT even if you may have a silly date like 302nd of
january, the DNORM function will convert this to the correct day and month.

$
0 180 FOR ;date loop, 2 days step
102 RCL
2 MEPUT ;get year from saved menu values
2 CNT 2 MUL ;get date step
1 ADD ;add to the 1st of january
0 MEPUT ;insert day in menu
1 1 MEPUT ;insert month=1
DNORM ;normalize the date

$

The ZZO code used below is not really necessary here, but shown as an example. If you
have a lot of calculations going, it may be difficult to remember how deep down the result
stack, a given value resides. ZZO puts a marker letting you use GET and PUT to access
results placed AFTER the ZZO code. 0 GET will get the first result, 1 GET the second etc.

$
ZZO ;set origin in result stack

$

The PLA code calculates single planets using the menu date and time. It calculates both
longitude and speed, but here you need only the longitude. To remove the speed, the two
results are swapped, and the DEC code cancels the (now topmost) speed. A bit of
arithmetics converts the longitude from intang to minutes and sign.

$
1 CNT PLA ;calculate planet using menu values

XY DEC ;get longitude (discard speed)
ITOM ;convert to minutes of arc
1800 DIVR ;convert to sign & minutes

$

Now the result stack holds: SIGN MINUTES
The graph superimposes all the signs (30 degree system), so to draw the movement, only
the date (x-value) and position in sign (minutes) are used. The sign number itself is used
only to check if the planet moves past a sign limit.

$
2 CNT 90 SUB ;calculate horizontal position
0 RCL 3 MULT ;horizontal position
4 STO ;save x
0 GET 900 SUB ;vertical position=minutes of arc
11 RCL
900 MULT ;scaled to +-frame heigth (cell 11)
5 STO ;save y
1 GET 6 STO ;save sign

$

Each time a position is calculated it is saved in cell 4 (x), cell 5 (y) and cell 6 (sign). After
the line drawing, these values are moved to cell 1-3 as "old" values. For each step you will
then be able to draw a line from the "old" x,y to the "new" x,y. The only exception is the first
step, where no old values yet exist. Therefore the first line below excludes drawing in that
case.
Also excluded are sign shifts, which must be drawn differently.

$
2 CNT IF ;if not first position
6 RCL
3 RCL = IF ;if same sign as last position
4 RCL 5 RCL ;start x,y
1 RCL 2 RCL ;end x,y
1 2 DFAT ;draw line of movement
ENDIF

$

If sign shift is detected, the line of planetary movement must be split in two: The first part,
which moves from "old" x,y to the sign limit (the grid frame), and the second part moving
from the other sign limit to the "new" x,y. The calculation is split in two parts: One direct
and one retrograde.

The calculation needs some insight into triangle geometry. A further complication is, that
using integer arithmetic, it is necessary to use the MULT code to be able to scale the

values properly. MULT combines a multiplication and a division avoiding round-off and
overflow errors.

$
6 RCL
3 RCL SUB ;if sign changed to next
12 MOD 1 = IF ;calculate when
5 RCL 2 RCL
SUB ;y difference (minutes only)
11 RCL
2 MUL ADD
7 STO ;real y diffence (including sign)
11 RCL
2 RCL SUB ;remaining y movement in old sign
1 DUP ;use twice
4 RCL
7 RCL MULT ;scale new x proportionally
XY ;remaining y movement again
1 RCL
7 RCL MULT
SUB ;scale old x and subtract
1 RCL ADD ;add to old x
7 STO ;crossing 0 degrees at this x
1 RCL 2 RCL
7 RCL 11 RCL
1 2 DFAT ;first part drawn
7 RCL 11 RCL
CHS
4 RCL 5 RCL
1 2 DFAT ;second part drawn
ENDIF

$
6 RCL 3 RCL
SUB ;if sign changed to prev
12 MOD
11 = IF ;calculate crossing point
5 RCL
2 RCL SUB ;y difference (minutes only)
11 RCL 2 MUL
SUB 7 STO ;real y diffence (including sign)
11 RCL CHS
2 RCL SUB ;remaining movement in old sign
1 DUP ;use twice
4 RCL
7 RCL MULT ;scale new x proportionally
XY ;remaining y again
1 RCL

7 RCL MULT
SUB ;scale old x and subtract
1 RCL ADD ;add to old x
7 STO ;crossing at this x
1 RCL 2 RCL
7 RCL 11 RCL
CHS
1 2 DFAT ;first part drawn
7 RCL 11 RCL
4 RCL 5 RCL
1 2 DFAT ;second part drawn
ENDIF

$

Now after drawing a line bit, the x,y and sign information is moved from "new" (cell 4,5,6)
to "old" (cell 1,2,3), and the daycount and planet count loops continue. Note the ENDIF
placement between the two NEXT's. You must always keep these constructions either
entirely overlapping or not at all. Partial overlap e.g. FOR IF NEXT ENDIF will produce
chaos, and should be avoided.

$
ENDIF
4 RCL 1 STO ;keep last x
5 RCL 2 STO ;and y
6 RCL 3 STO ;and sign
NEXT
ENDIF
NEXT

$

Finally, the saved menu values are put back to the input menu, so that it will look the same
as before the call, provided, that you did not interrupt the printout pressing ESC.

$
0 7 FOR ;restore menu values
1 CNT
100 ADD RCL
1 CNT MEPUT
NEXT
WKEY
GROFF

$$$

This concludes the GRAPHEPH module.

GRAPHIC EXAMPLE - DRAWING A CHARTWHEEL

This example can be used as a template for drawing a chartwheel to your own
specification. It also presents a couple of graphic techniques, e.g. pushing and popping
graphic states and use of rotating and scaling. You'll find rich commenting in between
which should help your understanding. The coding itself is actually only 66 lines.

$
1000 1400 SCALE GRON 0

All graphics output must start by switching graphics on
with code GRON and terminated by switching it off with
code GROFF. The code between GRON and GROFF defines
the graphics output.

Graphics appear within a frame with the default
coordinates +-1024 both for x and y. With SCALE, you
can define a different plot area. As the only graphics
command, the SCALE code must appear before GRON.
So default is 2048 2048 SCALE.

When displayed in the output window, the width of the
graph is determined by the preferences "wheel size".
Using a different plotarea width just means, that
this width is divided in finer or coarser steps.

But using a non-square plotarea lets you use more
or less paper height. So if you wish to make a
full page graph, you would define a plotarea with
more height than width.

$
-1000 -1000 DRAW
1000 -1000 DRAW
1000 1000 DRAW
-1000 1000 DRAW
-1000 -1000 DRAW
PENUP

To draw a line, use code x y DRAW. The first DRAW
will not draw, just place the pen. Succedent DRAW
commands will draw from the last point to the next.
Use code PENUP after the last draw. The first draw
after PENUP will be a non-drawing move.

$
GPUSH
0 11 FOR
1 CNT 30 MUL 8192 45 MULT ROTAT

0 970 DRAW
0 1000 DRAW
PENUP
NEXT
GPOP

It is essential in a graphics system to be able to
transform graphics, meaning to displace,
rotate and scale graphics elements. For this
XLI has the codes ORGIN ROTAT and RSIZE. When using
temporary rotates, scales etc. you will need to get
back to the original coordinate system afterwards
without having to reverse each displace etc.

The commands GPUSH and GPOP will do exactly this.
Put a GPUSH code before your transformation codes
and a GPOP after drawing the transformed elements.

As an example we will draw 12 piechart-type division
lines from the centre and 1000 plot units in the
directions 30, 60, 90 120... degrees.

v ROTAT will rotate the coordinate systm, so that the
following graphics will be rotated v intang units
around the current origin (centre). Intang units
are 65536 units equalling 360 degrees. To convert
degrees to intang multiply with 8192/45.

$
32768 34 PPOS SUB ROTAT

To have the ascendant appear horizontal, the whole
drawing must be rotated accordingly. If the ascendant
is in 0 Aries, the chart will need to be rotated 180
degrees to have the ascendant point left, as the
normal coordinate system starts its angles from the
X-axis which points to the right.

If the ascendant is in 30 degrees (0 Taurus), the drawing
should be rotated only 150 degrees. So the general
rule is, that the rotation is calculated as
180°-ascendant or in terms of intang values:
32768 14 PPOS SUB.

$
800 200 200 0
DRSGN ;radius width height rotation DRSGN

To draw the zodiac, you can use codes for drawing
single symbols rotating them on the fly as above. But

it is easier to use the DRSGN code, which will draw
all twelve signs rotated correctly and in the colors
defined in the Argus preferences. The parameters for
DRSIGN are:

Radius to the centre of the sign glyps.
width of each glyph
height of each glyph
rotation: angle of zero Aries in intang

$
900 5 2 -100 10 -45 7 -30 5 -18 0 DGREE
700 5 2 100 10 45 7 30 5 18 0 DGREE
500 5 2 -100 10 -45 7 -30 5 -18 0 DGREE

To draw a degree scale, the DGREE code provides a lot
of control. The arguments are:

radius: radius of the base circle
wcirc: linewidth of base circle
wdcirc: linewidth of extra circle (set to 0 for no extra circle)
l30 :length of 30 degrees divisions
w30 :width of 30 degree divisions
l10 :length of 10 degree divisions
w10 :width of 10 degree divisions
l5 :length of 5 degree divisions
w5 :width of 5 degree divisions
l1 :length of 1 degree divisions
w1 :width of 1 degree divisions

Please note, that all parameters other than radius are
measured in promilles of radius, so that you can easily
scale up and down just by changing the radius and keeping
the other parameters.

Note also, that you can use negative values for the lengths
of the degree markings, which will make them turn inwards.

$
1004 PENC
15 PENW
1 1 1 -900 1000 100 DRHOU
1 10 10 -900 1000 100 DRHOU
1005 PENC
5 PENW
1 2 3 100 700 50 DRHOU
1 5 6 100 700 50 DRHOU
1 8 9 100 700 50 DRHOU
1 11 12 100 700 50 DRHOU

To draw houses, use the DRHOU code. The parameters are:

chart : as for planets
from house number
To house number
radius of start of house division line
radius of end of house division line
length of arrow

It is possible to use a negative radius for example
to make the house line pass through the chart centre.

In the above example, there are codes for pen width
(PENW) and pen color (PENC). The color numbers can either
be the 000-888 RGB system used by Argus, or color numbers
1000-1037 used in the Argus color preferences. Just add
1000 to the number shown in the preferences color table.

$
1 1 1 10 500 3 DRASP

The aspect drawing DRASP has the following parameters:
chart :as with planets
spread :1=endpoints at spreaded positions 0=true positions
first planet
last planet
radius for endpoints
linewidth

$
1 1 10 10 SPRCH
1 1 10 10 500 600 700 DRPLA

To draw the planet positions, use the DRPLA code. To avoid
overlapping, they should be spread first using the SPRCH code.

The parameters for the SPRCH are

chart 0=radix 1=current 2=radix 3=auxchart1 4=auxchart2 5=present 6=auxchart3
lo planet lowest planet number
hi planet highest planet number
spreadsize spread value, should equal planet size (see DRPLA)

The parameters for DRPLA are:

chart :same as for spread
lo planet :lowest planet number
hi planet :highest planet number

planet size ;degrees as seen from chart centre
rinner ;radius of inner circle to where positions marks point
rplanet ;radius where planets should appear
router ;radiuo of outer circle to where position marks point

please note: rinner and router should normally be equal to the radius of a
degree scale. If you need only one set of position markers, make rinner
=router.

Even if you may find it tempting to draw planets first and
aspects and houses later, there is a reason for doing it in
this order. The planet drawing makes an invisible
(background colored) dropshadow, to make them stand out
more clearly, if drawn on top of other graphic elements.

$
1 1 10 10 SPRCH
1 1 10 10 500 600 700 DRPLA

$
2 1 10 4 SPRCH
2 1 10 4 900 950 900 DRPLA
1 2 0 1 10 1 10 900 700 1 DRXAS

To show how to draw a second set of aspects for the current
chart (until now it has been radix), the same SPRC and DRPLA
codes are used with slightly different parameter values.

To draw the cross-aspects between the two, a second aspectdrawing
code is used: DRXAS which has the following parameters:

chart0 first chart number
chart1 second chart number
spread 1=aspect line ends at spreaded position, 0=true position
lopla0 first planet in chart 0
hipla0 last planet in chart 0
lopla1 first planet in chart 1
hipla1 last planet in chart 1
r0 radius for aspect endpoints chart0
r1 radius for aspect endpoints chart1
linewidth use values between 0 and 4 to get reasonable results

$
GROFF

$$$

This concludes the Chartwheel example

CHANGING PCA CONFIGURATION

PCA has a number of installable settings. You can change these using the systemvariables
edit facility in the preferences menu. However they may also be changed using the SYSTR
function.

Further there are some special functions to change system settings.

PTMP: Placing this code in the start of your module will assure, that your changes will be
temporary during the module run and reset when the module finishes. Without PTMP the
values will change for the rest of your Argus session.

CONFX: There are a couple of these settings available, which decide a number of
program options. Some of them are values others are flags, which can be only 1 (true) or 0
(false). A full list of the system variables including the CONFX values are given at the end
of this document. Many CONFX values are unused for now.

SYMIX is used by the SYMBOL to change the glyphs for Uranus and Pluto

AYA sets the ayanamsha used by sidereal astrologers. Ayanamsha is a zodiac origin
offset, meaning, that the sign Aries starts somewhere displaced from the vernal equinox.
The setting refers to the displacement at 1.1 1900 A.D. Argus will then adjust the offset to
the current time calculating the precession. Precession happens, because the stars and
constellations moves relative to the vernal equinox by approx 50" of arc per year.

COL customizes the colours and can actually do no more than you can do using the colour
installation menu. It is the only way though, that you can change the colours from XLI,
because you cannot create a macro manipulating the colour installation, which uses cursor
keys mostly.

Further information on these codes are given in the function reference.

RUNNING ANOTHER PROGRAM FROM WITHIN PCA

EXEC execute external program

AUTO.XLI If exist, AUTO.XLI will be executed automatically, when Argus is loaded.

BROWS will open a browser window in your default internet browser

Calling external programs without having to stop PCA means, that on return, you will find
PCA in the state you left it with the same data and jobs, you were running before the call.
For example, if you just need to lookup something on your harddisk, edit an XLI file for
testing or send a fax. This however, could be easier done, if you have a multitasking or
taskswitching operating system.

More interesting is, that positions, aspects or whatever calculated by PCA may be
transferred to the program you call, and values calculated by the external program can be
transferred back to PCA.

The AUTO.XLI is not a code but an XLI file that, if present, will execute as soon as PCA
starts without showing the menu first. The AUTO.XLI may be coded also to quit PCA
automatically when done, by putting a macro at the end consisting of a Q (quit). Ultimately,
any number of astrology programs (with similar facilities), databases, statistics programs,
communication programs sending and receiving letters and faxes may cooperate in one
big session.

EXECUTING an external program

You may execute any .EXE program or .BAT from an XLI file. Here are some examples of
using EXEC:

$
EXEC

minityd.txt
$$$

The coding field should just have the code EXEC. The first line of the text field must hold
the complete path and program name including .EXE.

You could also put a name of a file having an extension with a default application to run it
in Windows. For example try replace the minityd.txt with argus.bmp. This should open
some graphics viewer, for example Windows Photo Viewer showing the argus.bmp image.

If you want to call Notepad.exe you probably will get nothing, if you just write notepad.exe,
as Argus will not be able to find it. Still as a CMD window will know where to find it, you
could write a BAT file called notepad.bat and put it in the Argus folder, then pu notepad.bat
under the EXEC code. The notepad.bat file should be just a one-line textfile of
"notepad.exe".

You could put arguments after the program name, for example.

$

EXEC

PCA42.EXE 1T.XL

$

This will open another instance of Argus printing a one month collective transits graph for
the current month. 1T.XL is a macro setting current time and calling the graph.

You may find a lot of things possible using EXEC. Feel free to experiment.

MISCELLANEOUS TIPS AND TRICKS

GRAF display bar graph
INFIL read 1 line of data file

Printing Bar graphs

You may print horizontal bar graphs to visualise the size of numbers. This works in simple
text mode using the IBM-OEM characters, for example a block character (220). An
example of this is given in the ELGRAF.XLI which follows here:

;ELGRAF printing bar graphs for tripli- and quadruplicities
;1 STO ;Fire
;2 STO ;earth
;3 STO ;air
;4 STO ;water
;5 STO
;6 STO
;7 STO

$
PTMP ;set module to clean up when finished
NPR 1 ;Print name

Number of planets including ASC in
$
1 OEM ;use DOS OEM character set

0 1 2 3 4 5 6 7 8 9 10 11
---------------------+---+---+---+---+---+---+---+---+---+---+---+
$
0 OEM
0 1 7 FOR 1 CNT STO NEXT ;Rest STO vars
1 14 FOR ;Count planets
1 CNT 11 > 1 CNT 0 14 IN OR IF ;and ASC
1 CNT PSI ;Signs

1 SUB 4 MOD 1 ADD ;Elements
1 DUP RCL 1 ADD XY STO
1 CNT PSI
1 SUB 3 MOD 5 ADD ;Quadruplities
1 DUP RCL 1 ADD XY STO
ENDIF
NEXT
7 1 FOR 1 CNT RCL 4 MUL NEXT 182 GRAF

Element Fire #
Element Earth #
Element Air #
Element Water #
$
1 OEM

---------------------+---+---+---+---+---+---+---+---+---+---+---+
$
0 OEM 182 GRAF

Cardinal signs #
Fixed signs #
Movable signs #
$
1 OEM

---------------------+---+---+---+---+---+---+---+---+---+---+---+
$
0 OEM

$$$

File input/output

File output for example for data export is done setting up a print file. You can then run one
or any number of paragraphs with text or with inserted templates to print out number and
strings. Putting a backslash at the end of a line allows you to put bits of lines together to
longer lines.

To get input from a file, you use the code INFIL. INFIL reads a line of a textfile. It is
possible just to read one line as is, or you may read special bits, numbers or strings. A
detailed explanation is given in the function reference part.

The following example will read a line of the file XXFILE.TXT into string 0. It could then be
printed, inserted as a name in the namefile, compared to other strings etc.

$
1 INFIL

XXFILE.TXT
@

$

To print a complete textfile on screen , the following code will do the job:

$
3 PAD ;output expand mode (single @ template)
1 32000 FOR ;setup maxnumber of lines
1 INFIL ;read one line from file to string 0
-1 = XIF ;break at end of file

XXFILE.TXT
@
$
0 NUMS ;output string 0 to screen

@
$
NEXT

$$$

To extract 6 numbers from an input line:

$
1 INFIL ;read one one line and parse numbers

XXFILE.TXT
#
$

The @ and # templates can be mixed with search characters to setup quite complicated
input tasks.

For example in the NAME2TXT module the following INFIL is used:

$
1 INFIL

NAMEFILE.CSV
"@"###, @1,#####, @2,##, @3,##, @4, @5,
$

The module will read a line like this:
"Electric Ephemeris ",12,12,1925,AD, 8,39, 1, 1, 0,E,55,42,N, 12,35,E,M :

The above input spec string means:

" look for the first quote character

@" read the following characters until but not

 including the next quote character into string 0

read three numbers separated by any character(s)

, look for next comma

read any number of (leading) spaces (if any)

@1, read the following characters until but not

 including the next comma into string 1

read five numbers separated by any character(s)

, look for next comma

read any number of (leading) spaces (if any)

@2, read the following characters until but not

 including the next comma into string 2

read two numbers separated by any character(s)

, look for next comma

read any number of (leading) spaces (if any)

@3, read the following characters until but not

 including the next comma into string 3

read two numbers separated by any character(s)

, look for next comma

read any number of (leading) spaces (if any)

@4, read the following characters until but not

 including the next comma into string 4

 read any number of (leading) spaces (if any)

@5, read the following characters until but not

 including the next comma into string 5

, look for final comma

You may find a number of other uses and combinations if you go through the function
reference on INFIL.

There is a similar code called UTFIL for writing a text file. See the function reference.

LOW LEVEL ASPECT CALCULATION (AZP)

The code AZP is a primitive aspect routine which needs more programming from your side.
The advantage is, that it is inde-pendant of the PCA orb settings and that it is completely
flexible. Below is an example of its use:

2 PPOS 8 PPOS SUB AZP 4 = XY ITOMS ABS 60 > AND ;Moo Tri Ura

Here follows a breakdown of the above coding:

2 PPOS 8 PPOS SUB ;calculate Moon-Uranus angle (intang)
AZP ;calculate aspect number and orb
4 = ;check that it is a trine
XY ;fetch the orb (intang)
ITOMS ;convert intang to minutes of arc
ABS ;remove orb sign
60 > ;check within one degree
AND ;combine aspect number and orb checks

The XY fetches the orb one level down the stack, and leaves the first condition (the trine
test) just below. When the orb testing is done (60 >), you will have the result of the orb
test topmost, and the trine test below. The AND will combine the two and the result will be 1
(true) if both the two conditions were met.

The AZP function produces two results, the aspect number (placed topmost on the stack)
and the actual orb (next). The actual orb is signed, so you may care about the order in
which you subtract the two planets, so you can use the orb sign to find out if the aspect is
applying or separating (if you know which one is the fastest).

A more advanced coding example is given here to calculate the orb speed. Here the actual
planet speeds are used, so you do not need to care about which planet is the fastest, and
whether they are retrograde etc.:

$
3 PPOS 4 PPOS SUB AZP ;aspect no. orb
XY 1 DUP 12 MUL ;12 * orb
3 PV 4 PV SUB ;orbspeed (signed)
1 DUP NOT IF ;check div by zero
DEC DEC 999 1 ENDIF ;if so replace by 99
DIV ;orbspeed (months)
XY ITOMS ;orb (signed minutes)
NUMS ;print results

Venus aspect Mercury

orb: ######

speed: ######
aspect: ######
$$$

The orb will be a signed value. The sign does not tell if the aspect is applying or
separating, but if the angle is less than or bigger than the precise aspect.

The orbspeed will be a number of months, if the chart is a progressed one. That is the
reason for multiplying by 12 in line 2. This number will also have a sign which in fact tells if
the aspect is applying or separating. So -7 means, that in a progressed chart, the aspect
was exact 7 months ago. This calculation assumes, that the planets are moving at
constant speed. Planets around their station will not fit this ideal case. To get the exact
time of perfecting the aspect, you will need to do repeated planetary calculations to adjust
for speed nonlinearity.

PLEASE NOTE Argus has an improved version of AZP called AZE. Please refer to the
function reference

THE XLI DEBUGGER

Debugging programs may be a very hard job. You think, that you have analyzed your
problem well, coded it correctly, and still even simple tasks may seem to behave
differently from the expected. Your first thought may be: faulty toolkit, faulty PCA, faulty
computer/harddisk, virus attack or whatever. The point is, that you cannot exclude any
explanation until you really find out, what's actually going on. Very often, when you finally
find the reason, what you first thought impossible, suddenly will appear obvious.

To find out what's going on, you need a magnifying glass to follow the action of your code
step by step. This is what the debugger does. The execution of XLI modules may run in
two modes: normal mode and debug mode.

In debug mode, you'll have to click the STEP button for each code, so it will run very
slowly, even if you hold the MULTISTEP button down instead for repeat. But the advantage
is, that for each code executed, you will see the topmost numbers on the result stack.
Values already on the stack when the DEBUG code starts the debutter will not be shown,
only the topmost.

The debug window

Activating the debugger:

The debugger (or debug mode) may be activated at any point in your module. Just put the
code DEBUG, where you want the debugging to start. When the debugger has started, you
may single step clicking the STEP button. Holding down the MULTISTEP will execute
several steps in repeat-mode. To leave the debugger, click the RUN button. Finally you
may quit the module prematurely clicking the ESCAPE button.

If you put DEBUG inside a loop, clicking RUN will leave debug mode only until it loops back
to DEBUG next time. You may then by repeatedly clicking RUN follow the result at just one
point in the loop, not having to tediously step through all the single codes inside the loop.

If you put DEBUG inside an IF-ENDIF construction, it will only be activated if the IF
statement is true. So if you have complex code with a large loop, for example 0 600 FOR,
and you want to debug an see what happens, when you reach count 472, you can insert a
line coded

1 CNT 472 = IF DEBUG ENDIF

The loop will then run until count 472, then start the debugger. Of course, you can insert
any condition, starting the debugger at e.g. a certain value gets negative or exceeds some
limit.

At the top panel of the debugger, to the left you see a panel showing the values of the
string array. You may step up and down or enter the desired index.

The top panel middle shows all the stack values. you may step up/down or enter an offset,
so you can also see discarded values. The "decimal" field shows the angle in degrees if
the stack value is an intang. Intang values are not exactly user friendly. If you check the
decimal box, the digits after the point are true decimals, if unchecked, they ar minutes of
arc.

The bottom field shows the FP stack-orientated

Top right, is the STO cells and the FP STO cells (NSTO~).

In practice:

You may experience a number of problems writing XLI modules or interpretations. The
debugger does not solve all of these, but will enlighten most coding errors.

Find the paragraph, which produces false output, or which fails to produce the expected
output, insert the code DEBUG as the first code in the paragraph and run the module. When
the program goes into debug mode, click STEP a number of times letting the debugger
single step. Check the intermediate results and compare them to what you expected.

If your module consist of a series of files calling the next, and it somwhat seems not doing
its job, it may be due to a link fail (check the next-filename) at the end of each module, or
that some paragraph has a blank line after the $-line, or that you have an unfinished IF
ENDIF construction. Debugging is a creative job!

There is also a code called XLOG which instead of letting your single step your module
writes the whole lot to disk. Please note, that this may slow down program execution to the
degree, that you may think, the program crashed..

ENCRYPTING YOUR TEXTS AND MODULES

Interpretations and modules for PCA are quite vulnerable to piracy copying. Real
programs (EXE and COM files) may be copy protected, but interpreted textfiles like
XLI-files cannot. Even if the main PCA program is not copyprotected either, it has the
user name unerasable inserted.

To add a minimum of safety from illegal copying of your modules, you may use the
program SCRAM to encrypt your interpretations and modules, and at the same time
prevent, that they are used with more than one users program. The encryption uses the
PCA user number as encryptation key.

To encrypt a module, use the following command-line command:

SCRAM filename user number (RETURN)

for example SCRAM TT1.TXT 13260

Of course TT1.TXT must be present. SCRAM will produce a new file TT1.SCM. This will
run with PCA, but the .SCM extension means, that PCA will decrypt it checking it
against its user number. If the user number does not match, only rubbish will be output.

If your interpretation or module consist of several files, you should encrypt all of them.
You

You do not need to change the file extensions to .SCM, neither in the installation menu or
in the file chains themselves. If PCA cannot find a file, it will automatically try to look for a
file with the same name, but with the extension .SCM. As soon as an SCM file is found,
PCA automatically assumes, that the remainder of the file chain is .SCM files.

The SCRAM program is available for developers on request from Electric Ephemeris.

COMPLETE XLI FUNCTION REFERENCE

The following complete alphabetical function code reference explains the details of each
function.

For each function a stack specification is given. The topmost figures taken off the stack are
called X,Y,Z,P,Q,R etc.

For example:

X Y DIVR ® X mod Y X/Y

means that X and Y are removed from the stack and that first X mod Y, then X/Y are put
back on the stack. So after the operation X/Y will be on top of the stack.

X IF ®

means that X is removed, and nothing is put back.

X STO ® X

means that X is used, but remains unchanged on the stack.

ENDIF ®

means that the code does nothing with the stack.

Integer and Floating point stack

Argus actually handles two stacks, one for integer numbers and a second one for floating
point (decimal) numbers. FP numbers provide a higher accuracy.
For instance when you input time and date, the menu data is held as 7 integer numbers:
day, month, year, BC/AD flag, hours, minutes and seconds. There is two FP codes: GETTI
and SETTI, which takes all seven numbers and converts them to just one FP value or
back. A single GMT date/time value is often convenient when you need to add or subract
time spans.

Also planetary positions held in integer, even as intang values have a precision of approx
20 seconds of arc, which is normally okay, but having the Swiss Ephemeris, you can have
much higher accuracy, which is provided with a couple of FP XLI codes.
Floating point XLI functions are marked with FP, so you can know, that they operate the FP
stack.

XLI MACROS
A great way to run or test small XLI samples is embedding them in a macro.

To do this, create a macro starting with a $-sign.Now you can insert XLI codes in much the
same way as if it was a file. The difference is, that you have only one line. You may still
have more than one paragraph, just separate them with additional $-signs.
To add a text part to a paragraph put each line in parenthesis:
The text line may contain templates, so you can output values, for example results of your
coding.
You can also include a DEBUG code, so you can single step through the coding.
Here is some very basic examples of an XLI macro

$ 1 (HELLO WORLD)
$1 5 FOR 1 (HELLO WORLD) $NEXT
$1 5 FOR 1 CNT NUMS (HELLO WORLD no. ##) $NEXT

Please note, that even if you enter some lower case letters, the Macro interpreter always
changes it to uppercase.
The following will print the birth data of number 3 to 10 in the namefile.

$3 PAD 3 10 FOR 1 CNT NFI 15 1 BDATA 1 NUMS (@) $ NEXT

PART TWO - FUNCTION REFERENCE

Data: MEGET fetch value from PCA input menu
MEPUT insert value into PCA input menu
NFI fetch namefile entry no. n
NPNT read/write namefilepointer
NPUT insert name into PCA input menu
BDPR write birth data
NPR write name
DDIF find distance between to dates
NDATE convert transit-timeslice to date
JD find julian date
INFIL read one line from textfile
UTFIL print to file, equivalent to INFIL
MOVCH move chart data around
SWDAT swaps input data sets
CNTRY get country name from current data
AREA get timezone area code from current data
MENAM insert name in string n
BDSEL select input dataset
AGE~ FP age in years currentdata-radixdata
BDATA birth data to string or print
DNORM Normalise input menu values to valid date
GETGL Get 1 line from atlas
GETTI Get date/GMT from input data as FP number
GETZO Get zone from input data as FP number
KM Distance in km between current and radix position
MAC* Overwrite namefile position
MAC+ Insert current data in namefile
NFN~ Select file in multiple file-end branch
NOTE Get one note line from currently selected namefile entry
PFILE show file content in output window
SETTI Set date and time input values from time (days)
SETZO Set input zone value from zone (days)
VICI Output size n list of closest cities
ZNORM Get correct zone from zonetable

Astrology: PSI planet in sign
PHS planet in house
RX planet retrograde
HSI house in sign

HRU house ruler
APOW aspect power
ANUM aspect number
AORB aspect orb
AZP aspect test primitive
PDEG planet position (degrees)
PPOS planet position (intang units)
HPOS house position (intang units)
PV planet speed (intang units)
HV house speed (intang units)
PLA calculate one planet (intang units)
XPLA find auxiliary planet information
HOUSE calculate one house (intang units)
BHUS house position (universal)
KUN fetch the 3 closest Kündig sections
GTR call userdefined graphic transit
RTA reset transit aspect list
NTA fetch next transit aspect
RECH fetch latest horoskope type
ZODOF Change zodiac origin to x
AZE aspect primitive
PNAME get system string index for planet name
SNAME get system string index for sign name
REF switch interpretation reference mode on/off
ANAME get system string index for aspect name
FPPLA FP planet/house calculation including velo, lat, ra, decl etc
HITS Aspectarium find aspects, sign shifts etc.
HSET Change calculated house position for a chart
NTAX Get next stored aspect from graphic transit/progression
PSET Change calculated planet position for a chart
SPRCH Spread planets of given chart
XPOS Get extra position info from chart
YPLA Calculate other planet or body

Mathematics:> bigger than
< less than
= equal
<> not equal
IN group membership test
AND bitwise AND
OR bitwise OR
CPL bitwise complement
NOT logical negation

BOO integer to boolean
ABS absolute value
CHS change sign
ADD add
SUB subtract
MUL multiply
MULT multiply by fraction
DIV divide
MOD modulus
DIVR divide with remainder
MAX find maksimum of two values
MIN find minimum of two values
ITOM intang units to minutes of arc (unsigned)
FPON turn floating point mode on
FPOFF turn floating point mode off
FTOI convert floating point value to integer
XOR exclusive or
ITOF convert integer value to floating point
PTR convert coordinates from polar to rectangular
SPRED spread conjuncted positions
ITOMS intang enheder to mintes of arc (signed)
<>~ FP not equal
<~ FP less than
=~ FP equal
>~ FP greater than
ABS~ FP absolute
ACOS FP arccosinus (degrees)
ADD~ FP addition
AND~ FP logical AND round(a) AND round(b)
ARTOE intang ARTOE for point on ecliptic
ASIN FP arcsin (degrees)
ATAN FP arctan (degrees)
BOO~ FP not zero (or close to 0.001)
CHS~ FP change sign
COS FP Cosine (degrees)
CPL~ FP complement convert to int and reverse bits
DECL Convert intang ekliptic position to intang declination
DGREE Draw circle with 360 degree markings
DIV~ FP division
ETOAR Intang ecliptic point to AR
FLOOR FP Floor function
FPMOD FP modulus
FPPTR FP polar to rectangular coordinates

FPRTP FP rectangular to polar coordinates
INT~ FP remove decimals
IN~ Same as IN but using FP stack
MAX~ FP pick largest of two values
MIN~ FP pick lowest of two values
MOD~ FP modulus obsolete version
MUL~ FP multiply
NOT~ FP NOT: (1.0 if round(x)=0 else 0.0)
OR~ FP OR: (1.0 if round(x) or round(y) <>0)
RE2SP Rectangular to spherical coordinates
SIN FP sine (degrees)
SP2RE Spherical to rectangular coordinates
SUB~ FP subract
TAN FP tan

String: CARY define string variables
NAME fetch current name into the streng array
PLACE fetch current city into the string array
STDEF define one string in the string array
STCAT concatenate strings
STCMP compare strings
STCUT cutout string
STLEN find length of string
NTOS convert number to string

STPOS find substring in string

ANTOI convert number field of comma-separated line to
STCHR Manipulate single char in string integer

Stack: DUP duplicate value in stack
FETCH fetch value in stack
ZZO place origin on stack
GET fetch number from stack
PUT put number into stack
XY exchanges numbers on top of stack
INC add one to the stack pointer
DEC subtract 1 from stack pointer
DEC~ FP Remove topmost value from stack
DUP~ FP duplicate topmost stack item
FSTKZ resize FP stack
INC~ FP stack pointer moved one up (opposite DEC~)
ISTKZ Resize integer stack
SORT~ Sort max 15 FP values
XY~ FP swap two topmost stack items

Memory: STO save in memory cell
RCL fetch from memory cell
FSTOZ resize FP STO array
ISTOZ Resize integer STO array
NRCL~ FP RCL get FP store cell content
NSTO~ FP STO store value in FP store cell
RCL~ FP RCL get stored value
STO~ FP STO store value

Flow-control: ENDIF end of if-construction
IF start of if-construction
FOR start of FOR-loop
CNT get FOR-loop counter
NEXT end of FOR-loop
XIF quit FOR-loop conditionally
NFN set filebranch index
WAIT withhold heading
CONT release withheld heading
PSTAT change printer status or suppress all print
EXEC execute an external program
DELAY wait for n milliseconds
ELSE conditioned branch
PROC define subroutine
RETN return from subroutine
SUBR call subroutine
DEBUG enter debug mode
BROWS Open url in default browser
CLRIF Clear all IF conditions
CONT Continue from WAIT and skip the waiting text
LOGX Stop logfile output
M2XLI Execute macro sting as XLI code
MAC< Select radix data
MAC= Fetch currently pointed data from namefile into input menu
MAC> Select current data
MACA Output aspects
MACB Output solar arc chart
MACD Output day chart
MACE Output Tertiary chart
MACF Output Minor progressed chart
MACG Output Composite chart
MACH Output Relationship chart
MACL Output Lunar return chart

MACP Output secondary progressed chart
MACQ Quit Argus
MACR Output radix chart
MACRG Call program registration box
MACS Output Solar return chart
MACT Output transit chart
MACU Start the clock chart
MACV Draw chartwheel
MACW Draw bi-wheel
MACv Draw no-house chartwheel
MACw Draw no-house bi-wheel
MOVIE Start live chart
XLOG Start logfile output

Interactive: MENU create menu
OPT wait for defined keypresses
WKEY wait any keypress
MENUX windows type dialog box
KEY simulate a special keypress

Layout: FEED conditional formfeed (obsolete)
GRAF show bar graph
NUMS print numbers or strings
ZMODE text wordwrap mode
MONS set monospaced font mode
OEM set OEM font on/off
FONTS define fonts
FONT select font definition
XFEED conditional formfeed (obsolete)
CFEED conditional formfeed (obsolete)
TXCOL change text color
TAB tabulate
PAD set string templates padding mode
CENT set centered text justification
DFCOL Define color from RGB values
ENCOD Encode text string between ANSI OEM and UTF-8
FEED~ FP version of FEED (obsolete)
SKZ Skip this paragraph if zero (stack untouched)
SKZ~ same as SKZ
TABLN Print horizontal line
VBTIM Dont translate character set in output

Graphics: GRON enter graphics mode

GROFF leave graphics mode
GRCOL set graphics colour
PENUP lift the pen
DRAW draw line
DFAT draw fat line
DRSYM draw defined symbol
DRTXT draw text string
PENC set pen color
PENW set pen width
BRCOL set fill color
POLY draw polygon
RSIZE set graphics scaling
ORGIN set graphics origin
BMP import and diplay bitmap (BMP file)
GMODE change currently open graphic window mode
SCALE define graphic frame
WHEEL draw chartwheel
CIRC Draw circle
DRASP customized chartwheel draw aspects
DRHOU customized chartwheel draw house divisions
DRPLA customized chartwheel draw planets
DRSGN customized chartwheel draw signs
DRWTT Draw text in graphics mode
DRXAS customized chartwheel draw X-aspects
GCLR clear graphics stack
GPOP Pop graphics stack
GPUSH Push graphics stack
ROT Set graphics stack rotate
ROTAT Rotate coordinates 2D
ROTX Rotate polar coordinates 3D around X axis
ROTY Rotate polar coordinates 3D around Y axis
ROTZ Rotate polar coordinates 3D around Z axis
SHAPE Draw shape from values in string

Macro: CML execute defined macro (destruktive)
CALL call defined macro (non-destruktive)
FUNX call single PCA function
MACn call single key macro
MAC. Clear window
MACOF Suppress all output
MACON restore output

Configure COL insert colour definition

CHROT set chartwheel rotation
CONFX set special configuration value
SYMIX create symbol choice table
PXL setup user defined printer translation table
AYA set ayanamsha value (minutes of arc)
PTMP backup system settings to restore at module exit
TIDY restore system settings before module exit
SYSTR Set or read system string
SYSAV save selected part of system configuration to disk
GAZ set atlas to ACS or simplified
PMIS lookup if given string is contained in features
REVNO Argus Revision number
SWFLG Set extra Swiss Ephemeris flags

Misc: SYN initialise synastry
NAX auxiliary namefile access
PPATH get Argus program path
XPATH get current XLI module path
PROFL Profiling - set/reset timer
PLIN not used
SNO Argus serial number AND 7FFF (15 bits - obsolete)
USR Retrieve USR code from interpretation

Security; PASSW encrypt password string
SCM Read simple encryption key

__

FUNCTION DETAILS
<
<~

Stack: X Y < ® Y < X

"Less than" checks if Y is less than X. If so it places a 1 on the stack, else a 0.
The FP version (<~) works on the FP stack and will return 0.0 or 1.0
__

< >
<>~

Stack: X Y < > ® Y < > X

Not equal: Checks if Y is different from X. If so it places a 1 on the stack, else a 0.
The FP version (<>~) works on the FP stack and will return 0.0 or 1.0

__

=
=~

Stack: X Y = ® Y = X

"Equals" checks if Y is equal to X. If so it places a 1 on the stack, else a 0.
The FP version (=~) works on the FP stack and will return 0.0 or 1.0
__

>
>~

Stack: X Y > ® Y>X

"Greater than" checks if Y is greater than X. If so it places a 1 on the stack, else a 0.
The FP version (>~) works on the FP stack and will return 0.0 or 1.0

__

ABS (absolute)
ABS~

Stack: X ABS ® abs(X)

Absolute value means changing to positive number, if X is negative.

The FP version (ABS~) works on the FP stack

__

ACOS

FP Stack: x ACOS ® arccos(x)

arccosinus (degrees)

See also SIN COS TAN ASIN ACOS ATAN
__

ADD
ADD~

Stack: X Y ADD ® X+Y

Adds two numbers
The FP version (ADD~) operates on the floating point stack

See also DIV SUB MUL MOD DIVR MULT
__

AGE~

FPStack: AGE~ ® age in years

Computer clock - birthtime in the radix data input (not the current). The birthtime must
either be entered with MEPUT radix (20-31) or by running the radix calculation e.g. MACR
which will copy the current data to the radix data input.

__

ANAME

Converts an aspect number to a negative system string number for use with NUMS.
ANAME is the equivalent of writing: 618 ADD CHS

The CFG lines holding the planet, sign and aspect names are ASCII and do not hold
symbols. To be able to display either abbreviations or symbols depending on the program
setting, the NUMS mechanism is intercepted, so that accessing these strings will be
translated to symbols. For example -542 NUMS should normally print "Moon" in the
@@@@ template, but if the Argus is set for symbols it will write the Moon symbol instead.
Because it is difficult to memorise and calculate the cfg indexes each time you want to
display a planet or sign, the codes PNAME, ANAME and SNAME can be used to fetch the
index. So 1 ANAME NUMS will display a conjunction symbol or abbreviation, 3 PNAME
NUMS a Mercury etc.

see also PNAME, SNAME
__

AND
AND~

Stack: X Y AND ® X AND Y

Checks if two conditions are both true. This means that:

1 1 AND ® 1
1 0 AND ® 0
0 1 AND ® 0
0 0 AND ® 0

1 represents "true" and 0 "false".

Technical note: if AND, OR is used on other numbers than 1 and 0 the result will be a
"bitwise" comparison. To be able to analyse the result, you will have to convert the
numbers to binary, i.e. each 16 ones and zeroes, and compare each set of bits separately.
This may be used creatively if you are experienced in this field. If not, better be sure, that
you use the function on zeroes and ones only.

The floating point version (AND~) will round the two values and return AND converted
back to floating point.
__

ANTOI

p n ANTOI ® (integer)

Fetch item p in a commaseparated list in stringarray[n] and convert it integer.
P must be a number between 1 and the last number in the list. If p is 0, the return value is
also 0. If p is larger, the last value in the list will be returned.
If an item contains other that digits, the first group of digits will be used
If an item has no digits it is invalid and the next one will be used. This should be avoided
This code is used to retrieve integer values from a commaseparated data string, which
could look something like
the string defined below. The result in the example below will be 3980.

$
1 STDEF

274,993,3287,11281,2,435,882,3980,9999,10039,4,0,34,.8123
$
8 1 ANTOI NUMS

value 8= #######
$$$

__

ANUM (aspect number)

Stack: X Y ANUM ® (number)

This code tells the kind of aspect between X and Y.

No aspect 0
Conjunction 1
Opposition 2
Square 3
Trine 4
Sextile 5
Semisquare 6
Sesquisquare 7
Inconjunct 8
Semisextile 9

X and Y are the two planets aspecting. For the planet numbers allowed, see PSI.

__

AORB

Stack: X Y AORB ® (orb)

This code tells the orb of the aspect between X and Y. The result is in tenths of a degree.
The orb value may be positive or negative:

If the angle measured from X to Y is less than the ideal aspect angle, the orb is positive, if
it is more than the ideal angle, it is negative.

For example if:

Angle from Sun to Mars 89 degrees : 1 5 AORB ® 10
Angle from Mars to Sun 271 degrees: 5 1 AORB ® -10

The result 10 means one degree (ten tenths). It may help to imagine a decimal point.

Even if the aspect is out of the defined orb, this function will still return a nonzero value.
This value will apply to the closest aspect. For instance if the angle between X and Y is
131 degrees, you will get the result 40 because it is 4 degrees from a sesquisquare. This
works even if you cancelled out sesquisquares by defining their orb to zero in the
preferences.

X and Y are the two planets aspecting. For the planet numbers allowed, see PSI.

__

APOW (aspect power)

Stack: X Y APOW ® (power)

The aspect power is a number between 1 and 10 dependant on the actual orb of the
aspect. If the orb is zero (exact aspect), the power will be 10, if it is just on the orb limit the
power will be zero. So the power will depend on the maximum orb you defined in the menu
and in the aspect orb installation.

X and Y are the two planets aspecting. For the planet numbers allowed, see PSI.
__

AREA

n AREA

Loads the timezone area code in the latest calculated chart into string array n.

See also CNTRY
__

ARTOE

X ARTOE ® Ecliptic value

Converts Right Ascension for a point on the ecliptic to its ecliptic longitude. Input and result
values are Intang.
__

ASIN

X ASIN ® arcsin(x)

Input and results on the FP stack
__

ATAN

X ATAN ® arctan(x)

Input and results on the FP stack
__

AYA (Ayanamsha)

Stack: X AYA ®

Changes the Argus Zodiac configuration to user defined ayanamsha X (Intang).

Some astrologers use the siderial zodiac instead of the tropical one used by most western
astrologers. Hindu astrology refers always to the siderial zodiac which rely on the fixed star
constellations rather than on the equinoxes. There are however disputes, which fixed stars
should define the siderial zodiac starting point.

The AYA code lets you define an "ayanamsha", the difference between the two zodiacs,
and automatically subtract this from all calculations. This will apply as long as you are
working from the XLI interpreter. As soon as you return to the main program, PCA will
revert to the tropical zodiac. If you want the main program also to use your defined
ayanamsha, you may use the CONFX code, see this. Position printouts with ayanamsha,
will have the ayanamsha angle written under the date, time, etc.
To enter your favourite ayanamsha, you must know its size at the 1.st of january 1900,
measured in minutes of arc. For example to insert LAHIRI ayanamsha, code:

$
1348 AYA

$

BEWARE The inserted value is lost when Argus is terminated. Modules using the PTMP
code will also cancel any ayanamsha set with the AYA code or in the preferences. This is
actually an unwanted side-effect which will be fixed in Argus 4.2 rev 25.
__

AZP (aspect primitive)

Stack: X AZP ® (orb) (aspect no 1-9)

This is an aspect routine giving just raw data without using the orb limits inserted in the
main and installation menus. Also, the values are intang units. The function produces both
the aspect number and the actual orb.

The X is the angle between the two planets measured in intang units. This may be
calculated using the PPOS code to get the planets positions and then subtracting them to
get the angle. For example:

1 PPOS 4 PPOS SUB AZP

Aspects numbers returned are:

0 - 20 degrees: Conjunction
20 - 40 degrees: Semi-sextile
40 - 50 degrees: Semi-square
50 - 70 degrees: Sextile
70 - 110 degrees: Square
110 - 130 degrees: Trine
130 - 140 degrees: Sesquisquare
140 - 160 degrees: Inconjunct (Quincunx)
160 - 180 degrees: Opposition

The orb is a signed number giving the distance from the ideal angle. The sign is calculated
the same way as in the AORB code (see this), but the orb is given in intang units.
__

AZE

Stack: v AZE ® (orb) (aspectno)

This is a variant version of AZP (see AZP) including all valid aspects. The aspect has to
be within the current orb definition for that aspect, i.e. if aspect scheme R is selected all
aspects are checked against the aspect orb in scheme R before they are accepted.
__

BDATA

Stack: N Q BDATA ®

Output selected parts of birth data from current input menu to string Q

N bit 0 : name
bit 1 date:
bit 2 time:
bit 3 zone:
bit 4 latitude:
bit 5 longitude:
The bits can be combined, if e.g. just bit 0 and bit 4 is set, N will be 17, and the ouput will
be name+latitude.

Q: string number to recieve the data

Q may also have negative values in which case:
-1: output data to screen
-2: output data to screen witn linefeed

__

BDPR (birth data print)

Stack: BDPR ®

Print date, time, longitude and latitude on four lines. This code is useful together with the
code NPR in the start of an interpretation to print birth details.

__

BDSEL

Stack: n BDSEL ®

Select input menu data card: 0=radix 1=current 2=Present. So for example, to make a
radix chart for the time now, you could code 2 BDSEL MACR to make the radix calculation
take the input data from the present data menu with the horary data.

Index 0: Currentdata
1: Radixdata
2: Currentdata
3: Temprdata
4: Tempcdata
5: Presentdata

This does not affect the actual card selection in the user interface.

Index 3 and 4 (temprdata and tempcdata) lets you make the selectedpointer point to the
data saved by PTMP. This means, if you use PTMP and then change the radixdata and/or
currentdata, you can get access to the original data using 3 BDSEL or 4 BDSEL. You can
then use SWDAT to swap these data around. Be aware though, that this could change the
original data you tried to save with PTMP.
__

BHUS

Stack: X Y BHUS ® (housenumber 1-12)

This code will find the house position of any point using the houses of either the latest
radix or the latest non-radix.

X: the position to test in intang units

Y: 1 for latest radix houses
 2 for latest non-radix houses

For example having calculated radix and solar return, to find the position of the radix Moon
in the Solar return houses, use this coding:

22 PPOS 2 BHUS

The planet numbers allowed are listed under PSI.
__

BMP

x0 y0 x1 y1 BMP (Draw bitmap)
You can load a bitmap from a BMP file into your graphic.
A graphic must have been initializes with the code GRON creating a square area 2048 x
2048 pixels with an graphics origin in the centre. So coordinate X can be -1024 (left) to
+1024 (right) and Y can also be -1024 (bottom) to 1024 (top).
x0 and y0 is the coordinates of the top left corner. If you set x1=x0 and y1=y0 then the
bitmap will have its normal size defined by the bitmap itself.

You will probably prefer to stretch it to fit your needs. In that case you should set x1 and y1
to where you want the bottom right corner. For example if you set the four coordinates to
$
GRON -1024 1024 1024 -1024 BMP GROFF

yourimage.bmp
$
In this example, the bitmap in file yourimage.bmp will fill your square completely.
If x0>x1 the bitmap will be mirrored left-right and if y0>y1 then the bitmap will be mirrored
upside down.

The bitmap file can be a .BMP .EMF .JPG or .ICO, the latter however does not seem to
be scaleable.
__

BOO (Boolean)
BOO~

Stack: X BOO ® (1 or 0)

Checks that a number is nonzero. This code is used, when you wish to combine numbers
with AND and OR, and these numbers may be more than just 0 or zero. Having calculated
for example two sets of points, then to check, that they are both nonzero, you would code

X BOO Y BOO AND

Just writing X Y AND will do a bitwise AND and this will probably not be what you are
looking for.

The floating point version uses the FP stack
__

BRCOL (fill color)

000 BRCOL changes brush color to black, 080 BRCOL changes the brush to green etc.
The brush is the colour used for filling polygons.

__

BROWS

BROWS Open url in default browser. The URL in question must be placed on the first line
in the text part of the paragraph.

You may use the code NUMS before BROWS to pass data to the url:

$
1030 NUMS

BROWS

laurids.com/mswheel.html?bdate=1912####
$
__

CALL

Stack: CALL ®

Execute a specified macro. The macro must be given as the first line in the text field. CALL
reads a line in the text field and executes it. The example below will insert the current date
and time and calculate a radix chart.

$
CALL

1T.R
$$$

See also CML

__

CARY

Stack: X CARY ®

Reads lines of strings into the string array. For explanation of the string array see the
chapter on this.

The strings must be separated by commas and will read into array index 0, 1, 2 etc.

For example:

$
2 CARY

ari,tau,gem,cnc,leo,vir,lib,sco,sgr,cap,aqr,psc
Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec
$

This will read the sign and month names into the string array. The sign names will get the
indexes 0-11 and the months 12-23.

Note that there is no comma at the end of the line, the line shift will act as a comma. If you
put a comma in front of the first line, the signs will get indexes 1-12 and the monthes 13-
24.

CARY is used for mass loading of the string array. To load a single entry, use the code
STDEF.

WARNING: CARY will whipe all earlier definitions of the string array, e.g. NAME.

__

CENT

Use this code to center text output. 1 CENT will make the following text adjust centered. 0
CENT will turn this off.

CENT does not work on graphics output

__

CHROT (chart rotation)

Stack: X CHROT ®

The PCA chartwheel presentation have a couple of rotational variants, you may set with
this code. The possible values for X are:

0: ascendant horizontal (default)
1: MC vertical
2: radix ascendant horizontal
3: radix MC vertical
4: aries to the right
5: aries up
6: aries to the left
7: aries down

The meaning of 2 and 3 is that the signs will have the same orientation as in the previous
calculated radix chart, so it will be easy to realise how much progressed angles have
moved.

__

CHS
CHS~

Stack: X CHS ® -X

Change sign means changing to positive number if X is negative and vice versa.
The FP version works on the FP stack
__

CIRC

Stack: X Y R CIRC ®

Draw circle with centre in X,Y and radius C. Graphics mode must be set to on)using the
GRON code). You may use code PENW and PENC to set pen width and color first.

__

CLRIF

Stack: ®

Clear all IF conditions. Use this code if you do not know if code interpretation is suspended
due to a previous IF statement, and you wish to force all previous IF conditions cancelled
and the code to execute anyway.

See also IF ENDIF XIF
__

CML (commandline/Queue)

Stack: CML ® 0

This code will setup a macro, which will execute as soon as the XLI module has finished. It
will overwrite any queue pending. This code may be used for example in an AUTO.XLI
module, which will force PCA to do specialized tasks as soon as it starts, before it leaves
control to you showing the main menu.

The macro must be given in the text field. CML reads a line in the text field and executes it.
The example below will call a radix and aspects using the menu values.

$
CML

RA
$

A more flexible macro handler is the code CALL (see this).

__

CNT (count)

Stack: X CNT ® (counter value)

This code is used inside a FOR NEXT counting loop to get the current value of its counter.

If only one loop is started, X must be one. If more than one loop is running inside each
other, X must be 1 for the outermost loop (the first one started), 2 for the next and so on.
Up till 10 loops may be running simultaneously. For an example, see code FOR.

See also FOR NEXT XIF
__

CNTRY

n CNTRY ®

Loads the country name from the "current" latest calculated chart into string array n.
So it is not enough to get the country into the input menu, you must calculate the chart first
befor using CNTRY

See also AREA
__

COL (colour)

Stack: X Y Z COL ®

Set the colour for one colour item (a planet, a sign, an aspect or panel background). This
code allows to customise the individual PCA colours. It has the same effect as using the
colour setup in the installation menu.

X is obsolete, was 1 or 2 in the DOS version to select screen or printer colors differently. In
Argus it is needed but unused, any value will do.

Y is the colour item number (0-43). Each item, that you may assign a separate colour has
an item number. For a list of these numbers, see GRCOL.

Z is the colour number (0-888), where each digit represents the quantity of red, green and
blue respectively. So bright red has number 800, bright green 080 and blue number 008.

You may use the COL just for the current module, starting with PTMP, the original colors
will be restored at module exit. See PTMP how to do this.
__

CONFX (configuration extras)

Stack: X Y CONFX ® X

A couple of setttings for Argus are saved in the confix array, which you can access with
CONFX. You may also access and modify it in the preferences, "edit system variables", it
consists (currently) of 64 integers, some of which have different use for single bits.

For example confix[0]

1 0 CONFX : (bit 0) Chiron included
2 0 CONFX : (bit 1) midpoint trees aspect type and orb suppressed
4 0 CONFX : (bit 2) - unused
8 0 CONFX : (bit 3) - No header
16 0 CONFX :(bit 4) Huber age point Jan Romander (slightly different speed)
32 0 CONFX :(bit 5) Print jobdate
64 0 CONFX :(bit 6) page numbers suppress
128 0 CONFX (bit 7) extended page number format "page xx off qq)

Other confix settings are
confix 3 0 No degrees and minutes on chartwheel

 1 degrees on chartwheel
 2 degrees and minutes on chartwheel

confix5: 0 use symbols in printouts
1 use latin abbreviations in printouts
2 use national abbreviations in printouts

confix 6: Tabline colour 000-888 or -1 for text color;
confix 7: Reserved for black use of Argus (no menus, auto-quit)
confix 8: bit 0=1 No orbspeeds, aspects printed in 4 columns

bit 1=1 unused
bit 2=1 No aspects on bi-wheel
bit 3=1 Short radix houses on bi-wheel
bit 4=1 include bonatti sections
bit 5=1 suppress chartwheel aspect to angles
bit 6=1 include PtFt on chartwheel
bit 7=1 horary clock graph includes all positions to the left
 bit 8=1 center chartwheel on page

confix10: bit 1=1 suppress progressed moon in secondary and tertiary
confix 11: bit 1=1 sets orbcombine to minimum for planet pairs with a zeroorb planet.

Notes:

The true equation for Huber AP uses the Koch house equations rather than the
interpolation which is used by the Huber school. Using the true equation seems more
"mathematical correct", and makes the movement of the AP more smooth.
Page number suppressing is normally set in the print layout preferences
Return value: The CONFX code returns the old value. This allows you to test, for example
just getting the value of CONFX 0 without changing it could be done like this:
0 0 CONFX 1 DUP 0 CONFX DEC
!!If you want to set or reset one bit in CONFX 0 the following codes will do just this:
0 0 CONFX 128 OR 0 CONFX DEC ;sæt bit 7 i CONFX 0
0 0 CONFX 64 CPL AND 0 CONFX DEC ;sæt bit 6 i CONFX 0

__

CONT

Continue from WAIT and skip the waiting text

See also: WAIT
__

COS

FPstack: X COS ® cos(x)

FP Cosine (X degrees)

See also SIN TAN ATAN ACOS ASIN
__

CPL
CPL~

Stack: X CPL ® not(X)

Reverse bits

Bitwise complement. This is a highly technical code changing all zero bits to ones and vice
versa. To analyse the result, you will have to convert X to binary, i.e. to 16 ones or zeroes.

The FP version rounds the argument on the FP stack, reverses the bits, converts back to
FP and pushes it back on the FP stack
__

DDIF (Date difference)

Stack: D1 M1 Y1 D2 M2 Y2 DDIF ® (difference)

Calculates the distance in days between two dates:
Y1 = date1 - years
M1 = date1 - months
D1 = date1 - days
Y2 = date2 - years
M2 = date2 - months
D2 = date2 - days

The difference is date1-date2, for example:

1950 3 6 1950 4 6 DDIF ® -31 (days)

The difference may be up to +- 32767 days. If the distance is greater, you will get the value
32767. This code is used in the biorythms module to find the age in days.

To calculate greater differences, you must put the dates on the input menu and use FP
functions GETTI and SETTI to convert the dates to FP.:

D2 0 MEPUT

M2 1 MEPUT
Y2 2 MEPUT
GETTI FPSUB
D1 0 MEPUT
M1 1 MEPUT
Y1 2 MEPUT
GETTI
SUB~

The result will be on the FP stack.
See also GETTI SETTI JD
__

DECL

Stack: X DECL ® declination

Convert intang ecliptic position to intang declination

See also: ARTOE ETOAR
__

DEBUG

Stack: DEBUG ®

This code is used by the XLI programmer to check the effect of his coding. If you are in
doubt whether a bit of coding is doing what you intend, you may temporarily insert this
code just before the coding to examine.

As soon as the interpreter reaches DEBUG it switches to single step mode. This means,
that it will execute just one instruction code at a time, then waiting for click on the step or
the multistep button.

In single step mode, the screen will for each instruction display the instruction name and
the topmost values on the stack. So you may follow step by step what your coding is
doing.

To leave single step mode, click the Run button. just press ESC, and your module will
execute on at normal speed. If within a loop, it may stop again next time the DEBUG code
is met.

To cancel out the module, click the Escape button

See also: the chapter on debugging and codes XLOG and LOGX
__

DEC (decrement stack pointer)
DEC~

Stack: X Y DEC ® X
Decrement code will remove the upper number on the stack. This is useful if some
superfluous stuff must be disposed of. For example:

X Y Z STO ® X Y
X Y Z STO DEC ® X

The first line will store Y in memory cell Z, but Y will still be left back on the stack. If you do
not need Y any more but the X beneath, the second line shows how DEC will dispose of Y.

The FP version works on the FP stack
__

DELAY

Stack: X DELAY ®

Pause for approximately X milliseconds. However, for output, the screen will normally wait
until the module is finished before showing anything, so the value is limited.

Please note that the milliseconds measure is not exact, but depends on your computer.
486's seem to have the double speed, so for instance 2000 DELAY causes a pause of one
second instead of two.
__

DFCOL

Stack: R G B N DFCOL ®

Argus has a table of "simple colors" using values from 0-888 defining mixing red (first
digit), green and blue (last digit) in proportions. So e.g, 800 is pure red 80 pure green, 0
is black. Values having digits 9 are undefined, but can be assigned any color with DFCOL.

The simplified colors represent 729 different colors, whereas DFCOL has better resolution
(0-255) for each component giving more than 16 million diffent colors. With DFCOL you
can mix any of these and assign the result to one of the 271 unused color numbers in the
palette. For example:

255 84 120 900 DFCOL

will assign a warm red to the color number 900.

If you now later use color 900 e.g. to set the Argus panel color: 0 0 900 COL, you will get
a warm red background on the Argus icon panel. (You will need to right click the icon
panel, then cancel to have the panel color materialize) The panel and other Argus colors
are normally defined in the preferences menu.

You may also use DFCOL the same way to redefine the first 888 colors in the color
palette. This will give you a 999 different definable colors palette to play with. But the color
numbers will then be less recognizable as red,green,blue values.
See also COL PENC BRCOL
__

DFAT (Draw fat line)

Stack: X1 Y1 X2 Y2 N D DFAT ®

Draw a multiple line (like the ones used for exact aspects) from X1,Y1 to X2,Y2, consisting
of N parallel lines D units apart. D should be only a few units to simulate one thick line.

This code is rather obsolete. It was used in the DOS days, where only thin lines were
availabel. With Argus, you would prefer printing a single line using the DRAW code and
defining the stroke width with code PENW

See also: PENW PENC DRAW PENUP POLY
__

DGREE

Stack: radius wcirc wdcirc l30 w30 l10 w10 l5 w5 l1 w1 DGREE

Draw circle with 360 degree markings

To draw a degree scale, the DGREE code provides a lot of control. The arguments are:

radius: radius of the base circle
wcirc: linewidth of base circle
wdcirc: linewidth of extra circle (set to 0 for no extra circle)
l30 :length of 30 degrees divisions
w30 :width of 30 degree divisions
l10 :length of 10 degree divisions
w10 :width of 10 degree divisions
l5 :length of 5 degree divisions
w5 :width of 5 degree divisions
l1 :length of 1 degree divisions
w1 :width of 1 degree divisions

example:
500 5 2 -100 10 -45 7 -30 5 -18 0 DGREE

Please note, that all parameters other than radius are
measured in promilles of radius, so that you can easily
scale up and down just by changing the radius and keeping
the other parameters.

Note also, that you can use negative values for the lengths
of the degree markings, which will make them turn inwards.

__

DIV
DIV~

Stack: X Y DIV ® X/Y

Divides X by Y. If Y is zero, you will get an error message.
FP version operates on the FP stack
See also ADD SUB MUL MOD DIVR MULT
__

DIVR (divide with remainder)

Stack: X Y DIVR ® X mod Y X/Y

This is a combined division and modulus function. It is equivalent to X Y 2 DUP 2 DUP
MOD 3 FETCH 3 FETCH DIV.

If Y is zero, you will get an error message.

__

DNORM

Stack: DNORM ®

Normalize date input menu values. It is perfectly possible to use MEPUT to enter out-of-
range day, month or year values, then you could use the DNORM to convert to a valid
date.

You may also use this to check if an entered day is valid:

$
0 MEGET 1 MEGET 2 MEGET DNORM
2 MEGET =
XY 1 MEGET = AND
XY 0 MEGET = AND

Date is valid
$
NOT

Date is invalid
$

See also: MEPUT SETTI
__

DRASP
Stack: chart spread p1 p2 r lw DRASP ®

customized chartwheel draw aspects

The aspects drawing DRASP has the following parameters:

chart :stored chart (radix, transit etc) as with planets
spread :if 1:endpoints at stored spreaded positions. if 0: true positions
p1: lowest planet (e.g. 1=Sun)
p2 highest planet (e.g. 10=Pluto)
r radius where endpoints should go
lw linewidth

To use spreaded positions, you must first calculate these using the code SPRCH. The
chart memory has a separate array for these positions, which are undefined until SPRCH
is executed.

See also DRXAS SPRCH SPRED DRAW DRPLA DGREE PENC PENW DRHOU
__

DRAW

Stack: X Y DRAW ®

Move the pen or draw a line to position X,Y. If it is the first DRAW instruction at all or the
first after a PENUP instruction the pen will move to X,Y without drawing, else it will draw a
line to X,Y from where the last DRAW instruction left the pen.

Example: To draw two rectangles you may code:

$
GRON
3 GRCOL
-800 -600 DRAW
-200 -600 DRAW
-200 600 DRAW
-800 600 DRAW
-800 -600 DRAW
PENUP
800 -600 DRAW
200 -600 DRAW
200 600 DRAW
800 600 DRAW
800 -600 DRAW
PENUP
WKEY
GROFF

$
See also: POLY PENUP PENC PENW
__

DRHOU

Stack: chart h1 h2 r0 r1 arlen DRHOU ®

To draw houses, use the DRHOU code. The parameters are:

chart: chart number as for planets
h1 first house number
h2 last house number
r0 radius of start of house division line
r1 radius of end of house division line
arlen length of arrow

See also: DRXAS SPRCH SPRED DRAW DRPLA DGREE PENC PENW DRHOU
__

DRPLA

Stack: chart loplanet hiplanet planetsize rinner rplanet router DRPLA

customized chartwheel draw planets

The parameters for DRPLA are:

chart :chart number
lo planet :lowest planet number
hi planet :highest planet number
planet size ;degrees as seen from chart centre
rinner ;radius of inner circle to where positions marks point
rplanet ;radius where planets should appear
router ;radiuo of outer circle to where position marks point

See also: DRXAS SPRCH SPRED DRAW DRPLA DGREE PENC PENW DRHOU
__

DRSGN

Stack: rcen gwid ghei rot DRSGN

Customized chartwheel draw sign symbols

The parameters for DRSGN are:

rcen Radius to the centre of the sign glyps.
gwid width of each glyph

ghei height of each glyph
rot rotation: angle of zero Aries in intang

See also: DRXAS SPRCH SPRED DRAW DRPLA DGREE PENC PENW DRHOU
__

DRSYM (Draw symbol)

Stack: Z R S X Y DRSYM ®

Draw a symbol from the PCA symbol table:

Z is the symbol number
R is the rotation
S is the size
X and Y is the coordinates where the symbol center should be

DRSYM uses the current pen color and width set with PENW and PENC

The following code will print all the symbols available:

;DRSYMS XLI MODULE
$
1800 2100 SCALE
GRON
4 PENW
0 15 FOR
0 15 FOR
1 CNT 2 CNT 16 MUL ADD ;sym no
0 ;rotation
180 0 STO DEC 120 ;siz
-1500 1 CNT 200 MUL ADD 1 STO ;x
1900 2 CNT 250 MUL SUB 2 STO ;Y
5 DUP 5 DUP 5 DUP 5 DUP 5 DUP
DRSYM
DEC DEC DEC DEC DEC
1 RCL 0 RCL 2 DIV SUB
2 RCL 0 RCL 2 DIV SUB
2 DUP 2 DUP DRAW
2 DUP 0 RCL ADD 2 DUP DRAW
2 DUP 0 RCL ADD 2 DUP 0 RCL ADD DRAW
2 DUP 2 DUP 0 RCL ADD DRAW
2 DUP 2 DUP DRAW PENUP
1 CNT 2 CNT 16 MUL ADD 1 NTOS
6 8 70 0 6 DUP 100 ADD 6 DUP 1 DRWTT
NEXT
NEXT
GROFF

$$$

__

DRTXT (Draw text string)

Stack: Z R S X Y DRTXT ®

Draw string array index Z:

Z is string number

R is the rotation

S is the size

X and Y is the coordinates where the first symbol center should be

__

DRWTT

M C Z T X Y S DRWTT ;draw text using tt-font

This code inserts text into a graphic. You can also use DRTXT to do that, but in that case
you have only the plotted symbols whose shapes are defined in PCA.CFG. This code uses
the current font, but text cannot be rotated.

M is the mode. The mode defines how the text is justified.
0 1 2 3: Horizontally right adjusted to y-axis
4 5 6 7: Horizontally centered around y-axis
8 9 10 11: Horizontally left adjusted to y-axis
12 13 14 15: Horizontally window centered
0 4 8 12: Writing above x axis
1 5 9 13 Writing on X axis (vertically centered)
2 6 10 14: Writing below x axis
3 7 11 15 Writing at bottom of screen

C is the color using the 000-888 RGB color system of Argus.
Z is the font size, not points but the Argus graphic units, so that 2047 is the full window
heigth;
T is the font style, 0=normal 1=bold, 2=italic, 4=underline. The figures may be added to
create compound values, e.g. 1+2=3 means bold-italic.
X and Y define the text placement in the graphic coordinate system, i.e. 0,0 is window
center, and +-1024 are the screen edges.
S is the string index holding the text to draw

__

DRXAS

Stack: chart0 chart1 spread lopla0 hipla0 lopla1 hipla1 r0 r1 DRASP

customized chartwheel draw cross aspects between two charts

The aspects drawing DRASP has the following parameters:

chart0: stored chart (radix, transit etc) as with planets
chart1: second stored chart
spreead : endpoints at stored spreaded positions. if 0: true positions
lopla0: lowest planet (e.g. 1=Sun) in chart 0
hipla0: highest planet (e.g. 10=Pluto) in chart 0
lopla1: lowest planet (e.g. 1=Sun) in chart 1
hipla1: highest planet (e.g. 10=Pluto) in chart 1
r0: radius where endpoints should go chart 1
r1 radius where endpoints should go chart2:

To use spreaded positions, you must first calculate these using the code SPRCH. The
chart memory has a separate array for these positions, which are undefined until SPRCH
is executed.
See also DRXAS SPRCH SPRED DRAW DRPLA DGREE PENC PENW DRHOU

__

DUP
DUP~

Stack: X Y DUP ® X (duplicate)

Duplicates one of the numbers of the stack. To duplicate the uppermost, use 1 DUP, to
duplicate the next use 2 DUP etc.

Examples:

X Y Z 1 DUP ® X Y Z Z
X Y Z 2 DUP ® X Y Z Y
X Y Z 3 DUP ® X Y Z X
X Y 2 DUP 2 DUP ® X Y X Y

The FP version works on the FP stack
__

ELSE

The ELSE code can be used in IF..ENDIF constructions.

See also: IF ENDIF

__

ENCOD

Stack: b ix ENCOD ®

Encode text string in string[ix] between ANSI OEM and UTF-8 and URL

ix: string index

b: 0: ANSI to OEM
1: OEM to ANSI
2: ANSI to UTF-8
3: ANSI to URL encode
4: URL encode to ANSI

__

ENDIF

Stack: ENDIF ®

Description: Ends the current IF condition. You must always have a matching number of
IF's and ENDIF's. See code IF for further explanation.

See also IF ELSE

__

ETOAR

Stack: ecl ETOAR ® ar

ecl: ecliptic position in intang units

ar: right ascension

The function assumes no ecliptic latitude.

See also: RE2SP, SP2RE, RTP, PTR, FPRTP, FPPTR

__

EXEC

Stack: EXEC ®

Call external program. This may be any EXE program or file with an extension, which
windows knows how to open.

$

EXEC

argus.bmp

$$$

You may put an application and add arguments for the application to open.

__

FEED

FEED~

- obsolete

__

FETCH

Stack: X Y FETCH ® X (fetched)

Reorders the stack by fetching the value Y steps down the stack and putting it on the top.

Examples:

X Y Z 2 FETCH ® X Z Y

X Y Z 3 FETCH ® Y Z X

1 FETCH has no meaning, as it will just fetch the uppermost, and put it at the same place.

__

FLOOR

FP-Stack: X FLOOR ® x

FLOOR FP Floor function returns the nearest integer below X. .

See also INT~ ITOF FTOI

__

FONT

Select font number defined with FONTS. 0 FONT selects the first font defined, 3 FONT
select font 3, 13 FONT selects font 13 and so on. The font is set for text output. If graphics
selected with the GRON code, it is set both for the text screen and for the graphics screen
where it can be used by the DRWTT command.

The FONT definitions include size, style, color and font name, even if the DRWTT use
only the name overrideing both size, style and color.

See also FONTS

__

FONTS

Stack: n FONTS

n is the number of font definition lines, which must be placed in the text part of the
paragraph.

This command lets you define up till 15 fonts to use in your interpretation. A font is defined
by its size, style, color and name.

As soon as they are defined, you can switch between them in you text. The FONT code
sets the font for an entire paragraph, but you may also switch between font 0-7 inline by
inserting special characters (184-191)

If you just want to change between colors, you can define a number of fonts with the same
name, style and size and give them different colors. Here is an example of defining 3
fonts. You must put the number of fonts you want before the FONTS code and provide the
same number of lines in the text below holding the definitions:

3 FONTS

9 0 0 Arial
9 1 0 Arial
10 0 800 Argus

Don't get tempted to put comments in the definition lines, The font name must be the last
item in the definition line.

This defines font 0 as Arial with size 9 points normal style and color black.
Font 1 is defined as Arial size 9, Bold and color black.
Font 2 is defined as Argus symbol font size 10 normal style and color red.

When defined, you can choose font 0-7 inside the text using the characters number 184-
191. If you have defined more than 8, fonts 8-15 can only be selected using the code
FONT, which works for a whole paragraph.

You may leave out the font name in the definition lines. In that case the default font
typeface is used as setup in the Argus preferences.

See also: FONT DRWTT

__

FOR

Stack: X Y FOR ®

This is a looping instruction, so that you may have your code execution repeated a number
of times. It works together with the code NEXT.

The loop is running a number of times determined by X and Y. A counter starts at X and
ends at Y. The counting may go either up or down so both 1 8 FOR and 8 1 FOR are valid.
The loop will always run at least 1 time, so for example 2 2 FOR will run 1 time, 2 3 FOR
two times etc.

Example: 0 10 FOR 0 1 CNT STO NEXT

will fill the value zero into memory cells 0-10 inclusive.

You may have several loops inside each other. For example, this coding will calculate the
number of planetary aspects between two charts:

$
0 ;start value
1 10 FOR ;radix2 planet count
20 30 FOR ;radix planet count
1 CNT 2 CNT ANUM ;test aspect number
BOO ADD ;increment if not zero
NEXT ;end radix count
NEXT ;end radix2 count

Do not rely on for-next structures working across files or function calls.

__

FPMOD

Stack: x m FPMOD ® x mod m

FP modulus showing the remainder when dividing x with m. In Argus modulus of negative
numbers is always positive. For example, if you have an angle of -35 ° modulus 360, for
astrological needs, you want the result 325°, not -35, which would be the traditional result.

See also: MOD

__

FPPLA

Stack: pla n FPPLA ® X

Calculate planetary info from data in the data input menu.

Pla: planet number (0-18)
n: which info:
0: geocentric longitude (degrees)
1: geocentric velocty (degrees per day)
2: geocentric latitude (degrees)
3: geocentric distance value (AU)
4: geocentric right ascension (degrees)
5: geocentric declination (degrees)
6: heliocentric longitude (degrees)
7: heliocentric velocity (degrees per day)
8: heliocentric latitude (degrees)

Please note, that the argurments pla and n are taken from the integer stack and the result
is placed on the floating point stack.

__

FPPTR

Stack: r v FPPTR ® X Y

Convert polar coordinates (r,v) to rectangular (x,y)

All values communicate on the FP stack.

__

FPRTP

Stack: x y FPPTR ® r v

Convert rectangular coordinates (x,y) to polar (r,v)

All values communicate on the FP stack.

__

FSTKZ

Stack: siz FPstack ®

resize FP stack to siz. Siz is taken from the integer stack.

Initially the FP stack has the size 32.

See also FSTOZ ISTOZ ISTKZ

__

FSTOZ

Stack: siz FSTOZ ®

resize FP STO array to siz. Siz is taken from the integer stack.

Initially the FP STO array has the size 32

See also FSTKZ ISTOZ ISTKZ

__

FUNX

Stack: X FUNX ®

Call a single PCA function, that is, those who have a single letter shortcut, you normally
can activate by pressing a letter key, e.g. Radix, Aspects etc.

X must be the ascii-value for the letter you would have pressed in the menu, e.g. 65 for A
(aspects) 80 for P (progressed) etc. Consult an ascii table to find the numbers you need.

This code is for single function calls only. It will usually be a more flexible solution to use
the CALL function instead, which is more flexible and will execute a complete macro.

__

FTOI (convert floating point value to integer)

Stack: fp FTOI ® int

This pops a value off the floating point stack, converts it to integer and puts it on the
integer stack.

see also ITOF

__

GAZ

Choose a gazetter (atlas). Argus has two gazetters:

1: A simple one used for demo versions (32000 cities)

2: The ASC atlas (approx 271000 cities)

0 GAZ selects the simplified one-line

1 GAZ selects ACS

__

GCLR

Clear graphics stack. With graphics you may push and pop graphics state to make partial
transformations (translate scale and rotate)

See also: GPUSH and GPOP

__

GET

Stack: X GET ® (value at ZZO marker + X)

Pick a value from the integer stack placed at offest X from anchor set by code ZZO.

Gets the value X positions from the ZZO marker on the stack. You must at some point
have set the ZZO marker before you use GET and PUT.

Examples:

ZZO 3 7 2 0 GET ® 3 7 2 3
ZZO 3 7 2 1 GET ® 3 7 2 7
ZZO 3 7 2 2 GET ® 3 7 2 2

See also: PUT ZZO DUP FETCH

__

GETGL

Stack: n GETGL ® size latitude longitude area

Get 1 line from atlas

n is the line number in the atlas to retrieve.
size returns the total lines in the atlas
latitude in minutes of arc (negative if south)
longitude in minutes of arc (negative if W)
Area code number part (if any else 0)
string result s :
string 0: Location name
string 1: Letter part of area code
string 2: Population letter

__

GETTI

FP Stack: GETTI ® GMT time in days since 1. jan 1900 at 0h GMT

get GMT time from input data as FP number. This will be a positive number if the date is in
19xx or later, and negative if before.

See also: SETTI GETZO SETZO MEGET MEPUT

__

GETZO

GETZO Get zone from input data measured in days as FP number. The result will be a
decimal number between 0 and 1.

See also: SETTI GETTI SETZO MEGET MEPUT

__

GMODE

- not used

__

GPOP

GPOP Pop graphics stack.

See also GPUSH GCLR

__

GPUSH

Push graphics stack

The graphic stack holds the origin, the rotation, scaling, pen color and -width, brush color
and width.

See also: GPOP GCLR

__

GRAF

Stack: X Y.... Z ascii GRAF

This code is used to produce horizontal bar graphs. The bars will have lenghts showing
the size of numbers, e.g. element strengths, planetary power or whatever. The numbers to
show graphically must be pushed on the stack (in reverse order as usual).

The graphs will appear in the text area starting where the character # is found. So where
you want a bar to start, place a # and leave the remainder of the line blank, because it will
be overwritten by the graph anyway. The bar lines can be mixed with lines, rulers etc., any
text to explain or enhance the appearance.

You must put a blank line below the graph lines to make sure the graphs are printed.

There must be the same number of lines with a #-character as you want bars, and there
must be the same number of numbers pushed on the stack (X Y Z..)

The numbers to show must be limited to positive numbers maximum 80, else you will get a
range check error message. If the graph starts in a column other than 1 (as in the example
below) the remainder of the line will be less than 80, and the number entered should be
limited adequately.

After the numbers to show, you must stack the ASCII code of the character, with which you
want to build the bar, typically a block graphics character (e.g. 220)

Example: Print a bar graph of the numbers in register (RCL) 20-23:

$
23 RCL 22 RCL 21 RCL 20 RCL 220 GRAF

--
Cell. 20 #
Cell. 21 #
Cell. 22 #
Cell. 23 #
--
$

__

GRCOL

Stack: X GRCOL ®

Set graphics colour. This sets the colour used for any following graphics output. X is a
number between 0 and 39. It represents the colours chosen for the different items in the
PCA colour installation menu. X=0 will thus set the colour chosen for the text background,
X=7 to the colour chosen for Taurus etc. The following is a complete list of colours:

0 : panel background
1 : Text foreground
2 : Graph background
3 : Graph main line
4 : Graph angles
5 : Graph houses
6 : Aries
7 : Taurus
8 : Gemini
9 : Cancer
10 : Leo
11 : Virgo
12 : Libra
13 : Scorpio

14 : Sagittarius
15 : Capricorn
16 : Aquarius
17 : Pisces
18 : Sun
19 : Moon
20 : Mercury
21 : Venus
22 : Mars
23 : Jupiter
24 : Saturn
25 : Uranus
26 : Neptune
27 : Pluto
28 : Node
29 : Conjunction
30 : Opposition
31 : Square
32 : Trine
33 : Sextile
34 : Semisquare
35 : Sesquisquare
36 : Inconjunct
37 : Semisextile
38 : Semi-quintile
39 : Quintile
40 : Tri-decile
41 : Bi-quintile
42 : Septile
43 : Bi-septile
44 : Tri-septile

So with this code you will not be able to set the colour to specifically "red" or "pink" or any
absolute colour, you must select from the colour set already chosen in the colour
installation menu. If however, you need a special colour setup, you may temmporarily
create this suing the COL code.

See also COL BRCOL TXCOL DFCOL

__

GROFF (Graphics off)

Stack: GROFF ®

Turn off graphics mode and closes the current graphic..

Note:! When XLI returns to PCA, a GROFF is automatically executed. Therefore, you do
not need to state GROFF unless you wish to continue XLI in text mode.

See also GRON

__

GRON (graphics on)

Stack: GRON ®

This code opens a graphic.In Argus from version 4.0 and later, output goes to a window
(document), which can hold mixed text and graphics.

A graphic is a rectangular area on the output window, normally placed after the latest text
output. The area width will fit the page width * the percentage defined in the Argus
preferences "print page options", the same as used for the chartwheel.

Plot area: The default is a square 2048 x 2048 draw units with (0,0) in the centre. By using
the SCALE code before GRON you can decide other rectangular dimensions. The graphic
will occupy the same width in the output, but the plot units will be different. For example
4000 2000 SCALE will make GRON produde a plot area 8000 wide and 4000 high, so you
can use coordinates x (--4000 to 4000) and y (-2000-2000).

To make a small graphic, you can of course plot with small numbers, but the area occupied
will still take up most of the page width. A better way is to change the "wheelsize" option in
the preferences. This can be done with XLI codes:

10 1 NTOS 15 -1 SYSTR ;set graphsize to 10% of page width

The original wheelsize should be restored at module exit (use PTMP code), you wont like
Argus showing tiny chartwheels.

See also GROFF SCALE RSIZE ROTAT GPUSH GPOP GCLR

__

GTR (Graphic transits)

Stack: X Y GTR ®

You may use this code to create a customized version of the graphic transits feature. The
graphic transits/progressions are not real graphics but using text-mode and special
characters (chr 178 if shaded blocks or chr 184-191 if bargraphs chosen in preferences).

The parameters you may change are the following:

1: Orb
2: Time slice
3: Calendar scale layout
3: Which transit and radix positions to include
4: Where to put horizontal lines

X is the time slice, calculated as 365 / X days.
Y is the orb in minutes of arc.
The other parameters are read from the first 3 lines in the text field:

1.st line (choice of planets).

Planets are assigned to letters, so that:

Radix Transit

Sun A a
Moon B b
Mercury C c
Venus D d
Mars E e
Jupiter F f
Saturn G g
Uranus H h
Neptune I i
Pluto J j
Node K k
Part fortune L
MC M
ASC N
11. house O
12. house P
2.house Q
3. house R

Note that you may not use a transit position of higher than the Moon's node.

The planets setup are in groups of five characters, for example:

1MNfk

This specifies the aspects to consider.

MN means: count from radix MC to radix ASC
fk means: count from transit Jupiter to transit Moon's node

The succession will be: First all aspects to radix MC, then all aspects to radix ASC. The
last to letters are the "inner loop" or the fastest counting series. If you want the transits in
the outer loop, that is, first all aspects from transit Jupiter, then from transit Saturn etc. you
must put fk before MN:

2fkMN

Note the number before the block, that was 1 in the first example and 2 here. If you want
the planets in the inner loop to be quoted first, write 2, else write 1. For example:

1fkMN MC tri Jupiter
2fkMN Jupiter tri MC

Normally you will want the transit first, so put 2 if you write the transits first and 1 if you
write the radixes first.

You may put several blocks of 5, so you may have several sets of planet counts after each
other in the same printout. For example if you want the transits Sun-Mars, but not Moon,
you must setup first a loop for the Sun, then for Mercury to Mars:

1AKaa1AKce

You may put a line between the blocks by inserting an 'L':

1AKaaL1AKce

This will print first transit Sun to radix planets, then a line, and then transit Mercury-Mars to
radix planets.

The planet setup line must be no more than 80 characters total.

2. Layout string:

The layout string has two purposes:

1: Determine the time span which is the number of characters times the time slice defined
by the GTR instruction. For example if Y is 60 the time slice will be 365/60 = approx 6
days. If the string length is 60, you will have exactly one year of transits.

2: Design the ruler, i.e. the characters to appear, between the aspect markers (the shaded
characters).

Below an example of a year transit ruler:

|....|....|....|....|....|....|....|....|....|....|....|....|

and a month transit ruler

. . . . | | | | | | .

!!3. The date marker line:

The third line determines where to put the date indicators in the header line. It may contain
the following characters:

Y: Write the year at this position and increment year count

y: Just increment year count.
M: Write the month at this position and increment month count
m: Just increment month count.
D: Write the day at this position and increment day count
d: Just increment day count.
>: Start all the aspect rulers just after this position

Note: Y,M and D uses the starting year, and does not automatically take their position into
account. Therefore the increment is necessary for possible further printouts. If you are not
printing all increment steps, you must place lowercase letters in between to get the count
correct.

The counts will just continue, so do not rely on correct calendar adjustment. However, if a
month exceeds 12 its count will start over from 1, and the new year will be printed at its
place (without updating the year count). See the XY option in PCA to view the effect.

Below is shown the example of a month transit date marker line. Only every 5 dates are
shown.

M Y >D d d d D d d d d D d d d d D d d d d D d d d d D d d d d D

Study the TTRANSIT.XLI for detailed examples of alternative printouts.
__

HITS

Stack: T A1 A2 B1 B2 P1 P2 HITS ®

This code is used for calculating aspects which has culminated between two instances in
time. It therefore needs four charts: A1 and B1 which are the two aspecting charts at time
t1 and A2 and B2 which are the same two charts aspecting at time t2. If A1 and B1 are the
same chart it will mean I-aspects and the redundants are automatically omitted. Also sign
shifts, house shifts, and stations may be checked.

T is the type of events:

1: aspects
2: sign shifts
4: house shifts
8: stations

If you want combinations, these figures can be added into a compound: eg. sign shifts and
stations will make T=10.

A1 A2 B1 B2 are the chart numbers. Refer to the chart index number shown under
MOVCH.

The two P arguments are not just two numbers, but several numbers defining a planet set.
P1 is the planet set for chart A, (the promissors), P2 is the set for chart B (the
significators). Planet sets are set up like this: P Q R ... S N. The last number is the count,

e.g. 1 2 3 3 means Sun, Moon, Mercury totalling 3. 0 6 7 8 9 10 6 means Chiron and
Jupiter through Pluto totalling six.

The returned hits are placed in the memory (STO) cells in position 100 onwards in sets of
10, so the first hit starts in cell 100, next hit in 110, next in 120 etc. Cell 100 shows the total
of hits. Each hit has the following format:

offset meaning

0 Number of hits left
1 Type (1=aspect, 2=signshift etc)
2 Day
3 Month
4 Year
5 A Planet no
6 Aspect number/leaving sign no/leaving house no/dir1
7 B Planet no./entering sign no/entering house no/dir2

"dir" means direction 1 for direct, -1 for retrograde. So if the second hit is: Mercury is
turning retrograde, cell 115 will be 3 (Mercury), 116 will be 1 (was direct) and 117 will be -1
(but changed to retrograde).

Note: This code was introduced to produce a general output facility for aspect timing. It
was abandoned again, because it performs very slowly, so it cannot compete with software
having dedicated aspect schedule output. Anyway, the code is still available for
experimental use.

The position indices used are:

Name pla. no index used by

Current 0.. 18 0 current (earlier radixchart)
Radix 20.. 38 1 radix (earlier current chart)
Current 40.. 58 2 current (earlier auxchart1)
Aux1 60.. 78 3 xli only (earlier auxchart2)
Aux2 80.. 98 4 xli only (earlier presentchart)
Present 100..118 5 present

__

HOUSE

Stack: X ® HOUSE

Calculate one house cusp using the input menu values.

Please note, that if you change the menu values using the MEPUT code, you must also
use DNORM to prepare the data correctly for HOUSE.

__

HPOS (house position)

Stack: X HPOS ® (intang position of X)

This code gives the position of house X in intang units. You may convert this value to
minutes of arc using the ITOM code.

The house numbers allowed are 1-12.
See also: PPOS
__

HRU (house ruler)

Stack: X HRU ® (ruler)

Find ruler of house no X in latest chart or latest radix chart. For a listing of the house
numbers allowed, see HSI. The ruler numbers are like RUL.

__

HSET

Stack: pos speed block house HSET ®

Change calculated house position for a chart

pos: position to insert (intang)
speed: house speed to insert (intang)
block: 1=radix chart 2: current chart
house: house number (1-12)

See also: PSET
__

HSI (house in sign)

Stack: X HSI ® (Sign occupied by house cusp X)

Find the sign on a house cusp, either in the latest chart or in the latest run radix chart. The
numbers allowed are: IF

X: Latest chart Latest radix chart
--
1. House 1 21
2. House 2 22
3. House 3 23
4. House 4 24
5. House 5 25
6. House 6 26
7. House 7 27
8. House 8 28

9. House 9 29
10. House 10 30
11. House 11 31
12. House 12 32
--

__

HV

Stack: X HV ® (speed of house X)

This code gives the speed of house X measured in intang units per day/year etc, that is,
per the natural unit for the chart type in question. To convert to minutes of arc, use the
ITOM code. In radix, transit and return charts, where the houses move very fast, you must
add 360 degrees to get the speed correctly.

The house numbers allowed are listed under HSI.

See also PV PPOS HPOS

__

IF

Stack: A IF ®

means that if A is zero, following code will stay inactive, until a matching ENDIF is met. If A
is anything other than zero, the following code will work.

You must always have a matching number of IF's and ENDIF's. They may be "nested", for
example IF.. IF... ENDIF... ENDIF. The "inner" IF and ENDIF are the matching pair.

You may well put an IF code in one paragraph, and the matching ENDIF in a later one.
This will make the paragraphs inbetween active or inactive depending on the IF test.

See also: ENDIF ELSE
__

IN
IN~

Stack: X 0 P Q .. R IN ® (1 or 0)

Member or group

Checks if X has one of the values P.....R. If so the result will be 1 (true) else 0 (false). The
zero between X and the list is mandatory. The code is mainly used for testing if for

instance the sign occupied by a planet belongs to a certain group of signs, e.g. water
signs, barren signs or whatever.

The above is equivalent to:

X P =
X Q = OR
....
X R = OR

The FP variant works on the FP stack
__

INC
INC~

Stack: X INC ® X ?

(increment stack pointer)

This code restores the number last removed from the stack. To use this code correctly
needs some stack knowledge. For example the code IF will use and remove the number
on the stack, but INC may get it back again:

X Y IF ® X
X Y IF INC ® X Y

This may be useful if you need the IF condition for further purposes inside the IF-ENDIF
construction.

__

INFIL (input line of data from file)

Stack: X INFIL ® (data, data, data) result code

Description: Reads one line of string and or numeric data from a text file. This could be
numeric data created by an external program for graphic or tabular presentation, which
PCA could output through its screen or printer drivers. Or it could be birth data imported
from a database or from another file format.

If X=1: Read one line. If the file is not open, it will be opened.

If X=0: close the file (if it is open).

The file name must be given as the first line in the text field. You may have only one input
file open at a time. If the file is open and you state a different filename, the existing file will
be used and the new name ignored.

The file is read sequentially.

A format string must be given as the second line in the text field. This will specify the line
reading sequence. The data may be mixed numeric and string data. String data is put into
the string array, and numeric data is pushed on the stack. Numeric data may not exceed
the size of the stack (1024).

If you need mass data handling, you must create a loop reading one line at the time and
use the data before the next line is read.

The result code is the last number pushed on the stack. It may have the following values:

-2 : Data read incomplete, data missing in line.
-1 : End of file reached
0 : File closed
1 : Successful read;

The line is read from left to right using a line read pointer.

The format string may consist of the following elements:

SPACE(s) : Skip any number of contiguous spaces in the data line, so that the line read
pointer points to the first non-space.

#: read one number from the data line and put it on the stack. If the line read pointer
does'nt point to a digit, it will be moved forward until it does, or the data line is exhausted.
Negative numbers may be read as well. If the number exceeds 32767 or -32768 it will be
set to these maximum (minimum) values.

~: read one FP number from the data line and put it on the FP stack. If the line read pointer
does'nt point to a digit, it will be moved forward until it does, or the data line is exhausted.
Negative numbers may be read as well.

@x read string of characters ending with character (x) from data line and place it in string
array 0. X may be any character (!!except @ or number digits). If the string exceeds the
available space in the string array, it will be truncated. !!X itself is not read.

@nnx read string of characters ending with character (x) from data line and place it in
string array nn. X may be any character (except @). nn may be any number between 0
and 99.
__

INT~

FPstack: d INT~ e

Remove decimals from FP number and put result back on the FP stack. This code works
also on negative numbers.

See also FLOOR

__

ITOF (convert integer value to floating point)

Stack: n ITOF ®

This pops a value off the integer stack, converts it to a floating point value and puts it on
the floating point stack.

See also FTOI
__

ISTKZ

Stack: n ISTKZ ®

Resize integer stack to n. Default is 1024

See also: FSTOZ ISTOZ FSTKZ
__

ISTOZ

Stack: n ISTOZ ®

Resize integer STO array to n

See also: ISTKZ FSTOZ FSTKZ
__

JD (julian date number)

Stack: JD ® (JD 10000nds) (JD ones) (JD fraction)

This will take the menu values for date, time and zone and convert them to julian date
number. If you change the menu values using the MEPUT code, you must also use
DNORM to prepare the data correctly for JD.

The function returns three numbers even if julian day is just one figure. This is because the
XLI interpreter handles short integers only, which would overflow trying to hold a JD.

The last part, (the "JD fraction") is the time of day expressed as a fraction.

To print the Julian date and time, you may use the following code:

JD
NUMS

JD: #### ####.####

This will work for positive Julian dates only, so do not move back before JD 0.

See also: GETTI SETTI
__

KEY

Stack: n KEY ®

(simulate a keypress)

Normally the XLI interpreter is not meant to operate the user interface. Rather user
interface is operating the interpreter. Otherwise a power struggle could arise.

There are however exceptions to this rule. The KEY code will simulate the user pressing a
key with the ASCII value n. So 13 KEY will simulate pressing the ENTER key and
therefore toggle output window focus. 32 KEY will simulate the SPACE bar and therefore
toggle the data input dialog box on and off. Other codes are doing other specialized jobs
like:

255 startxli;
254 TerminatePCA;
253 Window | fullsize
252 Window | tile
251 Window | cascade
250 Window | new
249 Window | close
245 show output screen
244 show command panel
243 start debug window
242 minimize Argus window
241 restore Argus window state
61 get data from database to input menu

__

KM

Stack: KM ® distance in km

Distance in kilometer between current and radix position. The two locations should be
found in the input data menu and the radix data menu.

The locations could be entered manually by getting data in the atlas, from the database or
typed in by latitude and longitude. You may use the double-data options to get two input
tabs and enter the two locations in each tab, or you may enter the first data, then run radix
and enter the second data after that.

You could also enter the coordinates in XLI using MEPUT.

__

KUN (Kündig sections)

Stack: KUN ® D M Y HH MM SS D M Y HH MM SS D M Y HH MM SS

For users of the Kündig rectification method, this code offers the possibility of some
automatizing. From the data in the main menu, the three closest Kündig sections are
calculated and the results put on the stack in chronological order. Each calculation
includes Day, month, year, hours, minutes and seconds. The timezone, longitude and
latitude are considered constant, as given in the menu.

What is meant by the "closest" section is: The second section will always be the closest to
the given time, the two other are the closest on EACH side. So there will always be at least
one section before and one section after the given time.

__

LOGX

Stack: LOGX ®

Stop logfile output

See also: XLOG PROFL DEBUG

__

M2XLI

Used mostly to interpret a Macro with embedded XLI code. In an XLI file, you would use
XLI functions directly, not put them into a macro.

Execute macro sting as XLI code
__

MACn

This is a complete series of codes calling calculations and charts. MACR calls the radix,
MACT calls transit, MACW calls the bi-wheel etc. It is a replacement for the more clumsy
CALL and then having a macro line. For long macros and for composite macros CALL is
still the prefered method, while for a single command, MAC.. is more convenient

Special MAC commands: Equivalent macro character

MAC. Clear window .

MACOF Suppress all output
MACON restore output
MAC* Overwrite namefile position
MAC+ Insert current data in namefile
MAC< Select radix data
MAC= Fetch currently pointed data from namefile into input menu
MAC> Select current data
MACA Output aspects
MACB Output solar arc chart
MACD Output day chart
MACE Output Tertiary chart
MACF Output Minor progressed chart
MACG Output Composite chart
MACH Output Relationship chart
MACL Output Lunar return chart
MACP Output secondary progressed chart
MACQ Quit Argus
MACR Output radix chart
MACRG Call program registration box
MACS Output Solar return chart
MACT Output transit chart
MACU Start the clock chart
MACV Draw chartwheel
MACW Draw bi-wheel
MACv Draw no-house chartwheel
MACw Draw no-house bi-wheel
__

MAX
XMA~

Stack: X Y MAX ® (X or Y whichever is the largest)

Takes two numbers off the stack and pushes the largest one back

The FP version does the same on the FP stack.

__

MEGET (Menu Get)

Stack: X MEGET ® (menu value)

The PCA input menu consists of a number of integers representing the inputted data. With
this code and the corresponding MEPUT, you may manipulate data in the input menu. The
menu values are:

0 MEGET ® Date, Day

1 MEGET ® Date, Month
2 MEGET ® Date, Year
3 MEGET ® Date, 0=AD 1=BC
4 MEGET ® Time, hours
5 MEGET ® Time, minutes
6 MEGET ® Time, seconds
7 MEGET ® Sex, 0=male 1=female neutral=2 Horary=3 event=4 Country=5
8 MEGET ® Timezone, hours
9 MEGET ® Timezone, minutes
10 MEGET ® (always zero)
11 MEGET ® Timezone, east=0 west=1
12 MEGET ® Geo latitude, degrees
13 MEGET ® Geo latitude, minutes
14 MEGET ® (not used)
15 MEGET ® Geo latitude, north=0 south=1
16 MEGET ® Geo longitude, degrees
17 MEGET ® Geo longitude, minutes
18 MEGET ® (not used)
19 MEGET ® Geo longitude, east=0 west=1

The shown parameter values work on the "current" data-input data set. You may also
access the "radix" and "present" data input values by adding 20 or 40: 20-39 will access
the radix data and 40-59 will access the present data, for example

22 MEGET ® Radix data - year
44 MEGET ® Current hour

See also: MEPUT GETTI SETTI GETZO SETZO
__

MENAM

n MENAM (insert name in string n)
-n MENAM (insert string n in the name input field)

This is similar to the NAME code, but the name is taken from the current input menu, while
NAME takes it from the current saved chart. So if the user enters new data, NAME will not
fetch the new name until a chart is calculated, while MENAM will. MENAM is equivalent to
MEGET. If n is negative, the name is moved from the string n back to the input menu.

See also: NAME BDATA NPR BDPR
__

MENU

Stack: MENU ®

This code in combination with the code OPT lets you setup a very simple menu where you
can choose between some options by pressing a key on the keyboard (no mouse).

First you set up a paragraph having just the code MENU in it code part.

The text part should be set up to show which keys you can use, and what you can expect
from pressing them. The text part is just information.

The following paragraph must hold the code OPT to stop the program waiting for your
keypress.

It is possible to insert stored values and text strings into the menu using the NUMS code
(see this). If you do this, you should put NUMS first, then the MENU code.

See also: OPT
__

MENUX (XLI defined dialog box)

This code sets up a dialog box with buttons, edit fields, labels, checkboxes and
radiobuttons as required. When the user closes the box, the return value is pushed on the
stack, and any other values or entered strings are transferred to where they were taken
from. Pressing ESC (or clicking a cancel button if present) will leave old values as they
were.

You may edit strings in the XLI string list, but you cannot edit numbers in the STO array.

MENUX takes a large number of arguments to define its controls. The format is:

kind left top height width key valueindex reserved reserved reserved
kind left top height width key valueindex reserved reserved reserved
kind left top height width key valueindex reserved reserved reserved
kind left top height width key valueindex reserved reserved reserved
......
n width height caption
MENUX

The first n lines define one control each.

The last line before MENUX define the number of controls and the size and caption of the
dialog box itself. The dialog box will always appear on the screen center.

The arguments for each control are:

Kind:
255 Edit box
254 Label
253 Checkbox
252 Radiobutton
240..251 reserved, not used

0..239 Button

Buttons kind-numbers must be different to distinguish which button has been
pressed. This number will be the one which is pushed on the stack when the menu
box is closed. If the kind number is nonzero, clicking that button will cause the
dialogbox to close.

Left, top, height, width:
Placements and dimensions of the control relative to the dialog box measured in
pixels.

Key:
Button: if set to 1 this means, that pressing the ENTER key will will be the
equivalent to clicking this button. If set to 2 this means, that pressing the ESC key
will have same effect as clicking this button. Only one button may have key 1 and
only one button may have key 2.

Radiobutton or checkbox: STO cell number from where to get or put the button
status: nonzero=on, zero=off.

Other controls: no effect.

valueindex: This is the XLI string number from which a text is taken to use as:

Button: Caption
Editbox: Default input text
Label: Label caption
Checkbox: Checkbox caption
Radiobutton: Radiobutton caption

Reserved:
not used, could be set to zero. In future PCA version, other arguments may be
needed, so these three position are reserved for this, so that it will not be necessary
to change the format and cause backwards incompatibility.

The last definition line holding information about the dialog box itself has these arguments:

n:
The number of controls, i.e. the number of lines above to use. Note, that there may
be a restriction on the size of n accoring to the size of the XLI stack. Each line holds
10 values, so the number of controls allowed is (stacksize-4)/10. The stacksize is
currently set to 1024 allowing for 100 controls.

width,height:
Width and height of dialog box. It may take a bit of experimenting to get this right
and place the controls to look right.

caption:
The index of the XLI string list to use as text on the dialog box's caption bar.

Functionality:

When the menu definition is set up, and the XLI meets the MENUX code, it will create the
dialog box according to the above definitions. The user can then press buttons, edit
editfields etc as needed.

To close the box, the user must click a button, which has kind neither zero or 2 Or by
pressing ENTER if any button has kind<>0 and <>2 and key=1.

If the box is closed with a button of kind<>2 (not an ESC-button), the values in any editbox
will be transferred back to the string list item it was taken from (defined by the ix
argument). If checkboxes or radiobuttons are present, the result value (1 or 0) will be
transferred back to the STO cell, from which their initial value was taken (defined by the
"key" argument).

To escape the box without making any changes, it can be closed using the closebox on the
caption bar, by pressing ALT-F4 or by pressing a key whose kind<>1 or by pressing ESC
and a key has kind=2 and key=2. Such a key should be labeled "CANCEL"

If any character in the range 128..191 is used for labels, buttons etc. the ARGUS font is
used, so it is possible to insert planet symbols etc.

menubox test example 1;

$
1 CARY ;Sun is written with & and letters, to show that ALT-U can be used

,S&un,‚,ƒ,„,…,†,‡,ˆ,‰,Š,Cancel
$
3 10 50 50 20 0 1 0 0 0 ;Button (1 and 2 are reserved for OK and CANCEL)
4 10 75 50 20 0 2 0 0 0 ;Button
5 10 100 50 20 0 3 0 0 0 ;Button
6 10 125 50 20 0 4 0 0 0 ;Button
7 10 150 50 20 0 5 0 0 0 ;Button
8 10 175 50 20 0 6 0 0 0 ;Button
9 10 200 50 20 0 7 0 0 0 ;Button
10 10 225 50 20 0 8 0 0 0 ;Button
11 10 250 50 20 0 9 0 0 0 ;Button
12 10 275 50 20 0 10 0 0 0 ;Button
2 10 310 70 30 2 11 0 0 0 ;CANCEL-button
11 350 350 0 MENUX 2 SUB
NUMS

ModalResult= #######
$$$

;menubox test example 2;

$
1 11 STO
0 12 STO
0 13 STO
1 14 STO
2 CARY

TEST XLI-DIALOG BOX,STO 11,STO 12,STO 13,STO 14
String 6,String 6 to edit,OK,CANCEL
$
253 10 25 150 20 11 1 0 0 0 ;checkbox
253 10 50 150 20 12 2 0 0 0 ;checkbox
252 170 25 150 20 13 3 0 0 0 ;radiobutton
252 170 50 150 20 14 4 0 0 0 ;radiobutton
254 10 75 150 20 0 5 0 0 0 ;label
255 100 75 200 20 0 6 0 0 0 ;editbox
1 50 125 100 30 1 7 0 0 0 ;OK-button
2 200 125 100 30 2 8 0 0 0 ;CANCEL-button
8 350 200 0 MENUX
14 RCL 13 RCL 12 RCL 11 RCL
6
NUMS

String 6 after edit: @@@@@@@@@@@@@@@@@@@@@@@@@@@@

STO values: 11 12
13 14
 #### #### #### ####

ModalResult= #######
$$$

See also: MENU OPT
__

MEPUT (Menu Put)

Stack: X Y MEPUT ®

The value X is forced into menuvalue number Y. Y can have the following vaues:
0..19 current data
20..39 radix data
40..59 present (clock) data
60..79 data of calculated radix chart
80..99 data of calculated current chart
100..119 data of calculated present chart

However, you will in most cases use 0..19 or maybe 20..39

See code MEGET for an explanation of the menuvalues and index.

If you change date and time, you should use the code DNORM as well to normalise the
date if out of range, and to make the system accept it as the "current time" for a number of
functions.

See also: MEGET GETTI SETTI GETZO SETZO
__

MIN
MIN~

Stack: X Y MIN ® (X or Y whichever is the smallest)

Takes two numbers off the stack and pushes the smallest one back

The FP version works on the FP stack

See also: MAX MAX~
__

MOD

Stack: X Y MOD ® (X+Y) mod Y

The modulus returns the remainder, when dividing X with Y. In Argus modulus of negative
numbers is always positive. For example, if you have an angle of -35 ° modulus 360, for
astrological needs, you want the result 325°, not -35, which would be the traditional result.

See also: FPMOD
__

MONS monospaced

1 MONS changes output to monospaced, meaning that all characters are forced into
position, even if a proportional font is chosen. This may cause wide proportional
characters to overlap.

0 MONS changes back to using the fonts own character spacing.

See also: OEM VBTIM
__

MOVCH move chart data around

When calculating charts, all chart information is saved in a data structure. There are 5
such structures:

Name pla. no index used by

,
Current 0.. 18 0 current
Radix 20.. 38 1 radix
Current 40.. 58 2 current
Aux1 60.. 78 3 xli only
Aux2 80.. 98 4 xli only
Present 100..118 5 present

So when any chart is calculated, its data is saved in structure "current", except the horary
clock, which uses its own structure (present). Calculating a radix, will be saved in both
"Current" and "Radix". Later calculations of chartwheels, aspects, midpoints etc are using
these data.

With MOVCH you can move data from one group to another. For instance 1 3 MOVCH will
move the data from Current into Aux2 overwriting what might be there. The following
example demonstrates this by swapping the radix and the current data, so that calling the
bi-wheel will have radix positions in the outer wheel and current positions in the inner:

0 3 MOVCH ;move current to aux1
1 0 MOVCH ;move radix to current
3 1 MOVCH ;move aux1 (former current) to radix
MACW ;call macro bi-wheel

The two aux charts are for temporary storage. However, you may access the positions etc
using expanded indexes. It was always possible to use e.g. 5 PPOS to get current Mars,
and 25 PPOS to get radix Mars. But now you can get Aux1 Mars writing 45 PPOS, Present
Mars writing 85 PPOS etc. This applies to all the codes, where you normally would add 20
to get the radix data.

__

MOVIE

Stack: MOVIE ®

Start live chart
__

MUL
MUL~

Stack: X Y MUL ® X*Y

Multiplies two numbers.

The FP version works on the FP stack

See also: ADD SUB MUL DIV ADD~ SUB~ MUL~ DIV~
__

MULT

Stack X Y Z MULT ® X * (Y/Z)

Multiply by fraction

This arithmetic routine will multiply X and Y as longints to avoid overflow, and then divide
by Z. The result will be converted back to short integer which may or may not produce an
overflow, but this is the responsibility of the programmer.

The routine is useful for scaling coordinates.

See also MUL MUL~
__

NAME

Stack: X NAME ®

Insert the current name into string array number X.

See also: MENAM
__

NAX

Stack: NAX ®

This code gets notes (if any) from the selected data in the namefile into the string array.
The lines of notes are placed in string[0] and onwards.

Warning: This code clears the string array for previous data. For better control, you should
use the more recent code NOTE

See also: NOTE
__

NDATE

Stack: X NDATE ® (year) (month) (day)

This is a code specialised for interpretation of graphic transits. When using the code NTA,
you will get start and end time for an aspect. These times are given as sector numbers.
This code translates the sector number (X) to day, month and year.

Example:

$
NTA XY NDATE 4 FETCH NDATE NUMS

From: ## ## #### to: ## ## ####
$

The dates will be approximate, if the time sectors are more than 1 day. The yearly transits
use 6 day sectors (intervals), whereas the monthly transits use half-day intervals.

__

NEXT

Stack: NEXT ®

This code ends a FOR loop. There must always be a corresponding number of FOR's and
NEXT's.

See also: FOR XIF
__

NFI

Stack: X NFI ® Y

Move data from namefile entry no. X to the input menu.

The result (Y) should normally be zero unless X points beyond the last entry or the
namefile entry X has a blank name. In that case Y will be the size of the namefile. The
namefile pointer itself will not be moved.

The function may be used to find the size of the namefile:

1000 NFI

You may also use the function to selectively fetch a specified entry or series of entries.

If you insert a series of events into the namefile and terminate with a blank name, you may
let the program run a series of progressions for these entries and stop when the blank is
met:

$
0 NPNT 1 DUP NPNT DEC 1000 FOR ;count from current entry
1 CNT NFI ;get entry
XIF ;exit loop if blank
CALL ;call progressed chart

P

$
NEXT

$$$

See also: NPNT MAC= MAC+ NAX
__

NFN (next file name)

Stack: X NFN

File branching. If a module consist of more than one file, which is the case in most
interpretations, you normally put the name of the next file in the chain after the three $$$-
signs at the end of the file.

But you may put more than one filename, using one line for each, and use the NFN code
to select which file to branch to. 1 NFN (default) will branch to the first file, 2 NFN to the
filename on the second line after the $$$ signs etc. 0 NFN will exit the XLI module and the
same will for instance 5 NFN if there are less than five filenames in the list.

The NFN code may appear in any paragraph in the file, the value will be remembered
when the $$$-signs are met.

__

NOT
NOT~

Stack: X NOT ® not X

Checking if a condition is false. For example to check if X is "greater than or equal to 5" is
the same as "not less than 5", and you may code like this:

X 5 > NOT

The codes NOT > < or = produce a boolean value. 1 if true and 0 if false. Not will reverse
this so 0 NOT will produce a 1 (true) and 1 NOT a 0 (false).

Actually will NOT convert any nonzero value to 0.

You may use any boolean result as an integer. Sometimes you can e.g. multiply a value by
the result of NOT or = instead of using IF ENDIF. This may simplify the coding, but
being less obvious to read, you may find it bad programming style:

1 DUP 0 > IF DEC 0 ENDIF ;if negative change to zero - traditional
1 DUP 0 > MUL ;same using the boolean result directly

The FP version works on the FP stack.

See also BOO = < > IF

__

NOTE

Stack: line i NOTE

Get currently pointed namefile entry notes line

line: is the line in the notes area (if any) of currently pointed namefile entry
i: is the string index to copy the line to

If no notes present or line is out of range, nothing is copied
if line is negative the number of lines is pushed on stack
if line is -2 then all lines are copied to string i separated by a CRLF
if line is -3 then all lines are copied to string 0, 1, 2 onwards (max i)

See also: NAX

__

NPNT

Stack: X NPNT ® Y

This code changes the namefile pointer and hands back the former pointer position. If the
pointer points to entry 13 and you write:

0 NPNT

the result will be 13 and the namefile pointer will be changed to entry 0.

If you just wish to know the pointer position without changing it, you must write:

0 NPNT 1 DUP NPNT DEC

You cannot set the pointer outside the size of the namefile. A negative number will put the
pointer to zero and if you put a number greater than the namefile size, the pointer will be
put at the end of the file.

__

NPR (birth name)

Stack: NPR ®

Output name in the current input menu using one line.

__

NPUT

Stack: X NPUT ®

Inserts a name into the PCA input menu taken from string array number X.

__

NTA
NTAX

Stack: NTA ® S E T R A
Stack: NTAS ® S E T R A

where S = startsector
E = endsector
 T = transitplanet
 R = radixplanet
 A = aspect number

This is a code specialised for interpretation of graphic transits. After running graphics
transits / progressions, a list of aspects found is saved in a special array, where they can
be retrieved with NTA.

It will fetch the next aspect in the list of transit aspects. The aspects are those calculated in
the latest graphic transit calculation. If the list is exhausted (no more "next" aspects) S will
be 0. This also applies if no graphic transits have been calculated yet, since PCA was
started.

The sector numbers S and E will be a number between 1 and 61. If you have setup your
own graphic transits using the code GTR the range may be different, starting with 1 and
ending with the number of timeslices defined.

The transit planet (T) will be a number 1-11 (Sun-Node).

The radix planet (R) will be a number 20-38.

The aspect number (A) will be a number 1-9.

For explanation of planet numbers, see code PSI.
For explanation of aspect numbers, see code ANUM.

The two codes NTA and NTAX works the same, but NTA filters off Chiron aspects, NTAX
does not.

See also: RTA
__

NTOS

Stack: n i NTOS ®

Convert number n to string and place it in string array no i.
__

NUMS

Stack: X Y Z NUMS ® X Y Z

This code lets you insert variable numbers and strings into the text field. A paragraph,
whose coding part contains the NUMS code will always be written, it does not matter if the
top of stack is 1 or 0.

The text field should contain "templates" that is fields of #######'s (for integer numbers),
~~~~~~.~~~  (for floating point numbers) or @@@@@@@'s for text, which will be 
replaced by the numbers or text when output.

The number of arguments (X Y Z .....) depends on the number of values or strings you 
wish to print, and must match the number of templates in the text field.

Reverse order: Arguments must be put on the stack in reverse order, that is, the first value 
to display must be put on the stack as the last.

An example: The following coding will display the values in memory cells one and two:

$
2 RCL 1 RCL

Value in memory cell 1: #######
Value in memory cell 2: #######
$

To print strings, these must be defined in the string array. The matching number put on the 
stack must be the number of the string in the string array. For example to print the sun sign
in the latest chart, try this:

$
1 CARY

,ari,tau,gem,cnc,leo,vir,lib,sco,sgr,cap,aqr,psc
$



1 PSI NUMS

The sun sign is: @@@
$

If the number on the stack is negative, the string will be looked up in the system strings.
In the older versions of PCA (the predecessor of Argus), the language definitions were part
of the system strings. Now they are in a separate file, so you cannot make NUMS read 
them. But they can be read into strings with SYSTR and then used with NUMS.

For example
$ 501 1 SYSTR 1  NUMS  (@@@) 

will print Jan

Planet, sign and aspect names also have negative numbers, but for ease of access, there 
are the codes PNAME, SNAME and ANAME which will translate them, so for example to 
print the Moon symbol (or the string Moo dependant on system settings):

2 PNAME NUMS

@@@

Text, string- and number templates may be mixed freely in the text part. the text templates 
may be any length. Numbers will be written in the right side of the template and strings in 
the left side.

Short templates: If a number template is too short to hold the number, the number will 
have only the last digits displayed. To display a number with leading zeroes, you may add 
a bigger power of 10 and make the template too short to hold the leading 1. for example:

2 PDEG 1000 ADD NUMS

###

If the Moon is in e.g. 13 Aries this will print 013

Short string templates: The string will miss its last part. With  the PAD code you have 
options to expand or shrink the template on the go depending on string length.

Text and number templates may touch each other for example: ##@@## to make the 
compact planetary position representation: 28ta51 for 28 51 Tau.

If you wish two templates of equal type to touch, for example to merge two strings, you 
must use the line continuation mark "\" and break the line. For example the julian day 
example, where a long number is mixed of two short ones:

$
JD
NUMS



JD: ####\
####.####
$

This will print e.g. 2449054.9102.

The NUMS code is extremely useful for exporting data!

Note, that the NUMS code not only works with output but also with lines used for 
arguments to other functions including: STDEF, CARY, CALL, CML, EXEC and FONTS

See also: PAD
______________________________________________________

OEM 

In the old DOS days the available character set was different, Especially language 
characters were assigned differently and the DOS set had some nice grid characters to 
make tables.

To keep compatibility and to make some DOS features available, Argus comes with a 
special font (pca-oem.ttf) mapped in DOS style and with the gric characters.

1 OEM will make Argus try to emulate the DOS character set, which means that if your 
module is using accented or other national characters, they will be translated from the 
DOS set to fit windows ANSI standard. Also the frame characters will be emulated, so that 
it is possible to draw grids etc using the IBM/DOS framing characters (only the single line 
ones). To switch it off, use 0 OEM.

PLEASE NOTE: The MONO setting will override the OEM, so do not use both. OEM is 
itself monospaced.

______________________________________________________

OPT

Stack:  0 X Y...Z OPT  ®  (key pressed)

As described for the MENU code, you must use OPT to wait for keypresses.

Together with OPT, you define wich keypressed to wait for. You MUST (as shown) always 
start with a zero, then X, Y etc will be the different keys you may press. The key numbers 
are 65 for A, 66 for B etc. which in fact are the ASCII codes for the symbol pressed. OPT is
not case sensitive, so e.g. 65 will work for both capital and lowercase "A".

You may put no more than 31 possible keypresses.

The result of OPT is a number between 1 and N, where N is the number of possible 
keypresses you have defined. For example:



0 88 65 66 OPT

will produce 1 if key "A" is pressed, 2 if key "B" and 3 if key "X" (88) is pressed. If you click 
the x top-right corner of the dialog, it will exit with value 2

The result may be used for example with code NFN to determine which file to branch to, or
it may be stored and tested with IF to decide which instructions to do.

See also: MENU MENUX
______________________________________________________

OR
OR~

FP OR 1.0 if round(x) or round(y) <>0 

Stack: X Y OR  ®  X OR Y

Checks if either of two conditions are true. This means that:

1 1 OR ® 1
1 0 OR ® 1
0 1 OR ® 1
0 0 OR ® 0

1 represents "true" and 0 "false".

The FP version works on the FP stack, it first rounds the two arguments, and after or-ing 
them converting them to FP and pushes them back on the FP stack.

Technical note: if AND, OR is used on other numbers than 1 and 0 the result will be a 
"bitwise" comparison. To be able to analyse the result, you will have to convert the 
numbers to binary, i.e. each 16 ones and zeroes, and compare each set of bits separately. 
This may be used creatively if you are experienced in this field. If not, better be sure, that 
you use the function on zeroes and ones only.

See also: AND XOR BOO IF
________________________________________________________________________ 

ORGIN

x y ORGIN (displace graphics origin)

You can move the origin for succedent drawing, so that succedent drawing will use the 
new x,y ase.g. 0,0 is the lower left corner, or if for example you are drawing a group of 
things at a special location, then it may be an advantage to replace the origin.

This means, that you can change a whole group of graphics elements just by changing the
origin, rather than changing all the x an y's in the drawing. X and Y used in the ORGIN 



command are always relative to the original origin in the center, so it is independant of 
what previous ORGIN commands were doing.

The X and Y scaling is the units defined by the SCALE code used before GRON, or if no 
SCALE command has been issued, the units are +- 1024.

See also: SCALE ROT  RSIZE GPUSH GPOP
________________________________________________________________________ 

PAD

n PAD

When printing strings using the NUMS code and a @@@@@@@ template, the string will
normally be shorter than the template. If the interpreter is in padding mode, the remaining 
part of the template will be filled with spaces so that lines remain the same length 
independant of the string length. In non padding mode the template will be truncated to fit 
the string. 1 PAD (default) will put XLI in padding mode and 0 PAD will put it in truncate 
mode. Note, that the code SYN also puts XLI in truncate mode.

Example:        @@@@@@@@@@@ and @@@@@@@@@@ are friends

0 truncate mode:  Tom and Jennifer are friends

1 padding mode:   Tom         and Jennifer   are friends

2 tab mode: inserts tabs instead of spaces. ARGUS uses tabs to produce e semi-
monospaced print.

3 expand template to hold the full length of the string, you may use just a single @ for the 
template.
______________________________________________________

PASSW 

Stack: s q PASSW

Encrypt string s with key q

encrypt password string. The encryption algoritm is non-standard.
___________________________________________________________________

PDEG            (planet degrees)

Stack: X PDEG  ®  (degrees 0-360)

This code finds a planet's position in degrees. So if the Moon for instance is in 3-51 
Sagittarius, the coding:

2 PDEG



will produce the value 243. The minutes of arc are just removed, not rounded up, so any 
position between 3-00 and 3-59 Sgr will result in the value 243.

This code may be used for "Degree astrology" for instance "Sabian symbols", or to find 
decanates, for example:

4 PDEG 30 MOD 10 DIV

will produce following results for Venus in:

First  decanate (any sign): 0
Second decanate (any sign): 1
Third  decanate (any sign): 2

The planet numbers allowed are listed under PSI.

__________________________________________________________________

PENC

c PENC

000 PENC makes the graphic pen black, 888 PENC makes it white, 800 PENC makes it 
red etc.

The colour numbers in ARGUS are 000 to 888, so use only digits 0-8, e.g. 699 is not 
allowed. Color numbers with digits 9 (9xx, x9x or xx9) are undefined unless you redefined 
them with DFCOL

The default pen color is black (000)

See also: PENW DFCOL COL BRCOL GRCOL TXCOL
__________________________________________________________________

PENUP

Stack:  PENUP  ® 

Graphics lift pen. Think of the line drawing capability as moving a pen, that may be either 
lifted over the paper, thus not drawing or be down touching the paper as it moves, thus 
drawing a line. PENUP will lift the pen, so that the next following DRAW will just move the 
pen to the new position without drawing.

______________________________________________________

PENW

w PENW



Set penwidth to w in user coordinates. So 2048 penw will make following draw commands 
draw lines filling the whole plotting area.

Pen width defaults to 1.

See also PENC
_______________________________________________________

PFILE

Stack: PFILE ®

show file content in output window

The file name must be placed in the text part. If the file is not found, nothing is output.
______________________________________________________

PHS             (planet in house)

Stack: p PHS  ®  (house position of planet p)

Finds the house position of planet X. The house position is in the planets own chart, not 
crossreferenced to latest radix (as with the ordinary PCA chart printouts). The planet 
numbers are listed under PSI. The result is a house number between 1 and 12.

To find cross-referenced houses, use code BHUS instead

The planet numbers allowed are listed under PSI.

See also: BHUS
______________________________________________________

PLA             (planet)

Stack:  p PLA  ®  (speed) (position)

This code calculates a single planetary position and speed using the information in the 
input menu. p must be in the range 1-12. The values for position and speed are intang 
units.

Note, that if you change the menu values using the MEPUT code, you shouold also use 
DNORM to prepare the data correctly for PLA.

______________________________________________________

PLIN

PLIN is obsolete and does nothing. Was used in DOS PCA for printing information.



______________________________________________________

PLACE

Stack:  X PLACE  ® 

Insert the current input menu city name (if available) into string number X.

See also GETGL
______________________________________________________

PMIS 

Stack: s PMIS ® 1 or 0

s is the string number holding a lookup string.  The result is 1 if the string is part of the 
system string features as inserted in the registration data.

Lookup if given string is contained in features
___________________________________________________________________

PNAME

Stack: p s PNAME ®

Converts an planet number p to a negative system string number for use with NUMS. 
PNAME is the equivalent of writing: 540 ADD CHS

See also ANAME, SNAME
______________________________________________________

POLY

Draw polygon using the current pen and brush colours. To draw a polygon, you must first 
provide the coordinates for the corners. This is done the same way as drawing, that is e.g.

$
GRON
8 PENC
80 BRCOL
PENUP
-200 -200 DRAW
-200 200 DRAW
200 200 DRAW
200 -200 DRAW
POLY



$$$

So instead of terminating a shape with PENUP, you use POLY. POLY will automatically 
close the shape, if the last point is not the same as the starting point.

The brush color will fill the polygon, a shape drawn with PENUP will not get filled.

See also PENUP 
______________________________________________________

PPATH

n PPATH (get Argus program path)

Loads the program path into string array[n]
The result should normally be:

C:\argus4\   

see also XPATH
______________________________________________________

PPOS            (planets position)

Stack:  X PPOS  ®  (intang position of X)

This code gives the position of planet X in intang units. You may convert this value to 
minutes of arc using the ITOM code.

The planet numbers allowed are listed under PSI.

______________________________________________________

PROC

n PROC (define a subroutine number n)

You may use subroutines in XLI. They are identified by a single number (n) of your own 
choice (but not by a name). To define a subroutine, you must place it somewhere in your 
code BEFORE it is used. This is because the XLI interpreter must do one scan (dummy 
run) first, which does nothing but make note of the address.

It is perfectly legal to place the subroutine in another file than where it is going to be called 
from.

Each subroutine must be defined with an individual n, else your calls will be ambiguous.



After the PROC must follow the actual code of the subroutine. This can be several 
paragraphs, or even several chained files, and must be terminated by the RETN code. 
Without the RETN code, your XLI program will just scan forever, never execute.

Soubroutines in XLI cannot be used recursively.

See also: SUBR RETN
___________________________________________________________________

PROFL

Stack: b PROFL

Start (b=1) or stop (b=0) a profile timer. Profiling lets you check how long it takes for a 
certain code sequence to execute. 

Argus has only one profile timer available.

When stopped (b=0) a line will be written on the output screen showing the time elapsed 
since the timer was started. The timer is not reset, when the module terminates.

See also: LOGX XLOG DEBUG
___________________________________________________________________

PSET

Stack: pos speed block planet PSET ®

Change calculated planet position for a chart

pos: position to insert (intang)
speed: planet speed to insert (intang)
block: 1=radix chart 2: current chart
planet: planet number (0-18) 

See also: HSET
___________________________________________________________________

PSI             (planet in sign)

Stack: X PSI  ®  (sign number of planet X)

Get the sign occupied by planet X in the latest calculated (any) chart or latest calculated  
Radix chart.

Planet numbers are:

Latest curr radix curr aux1 aux2 pres aux3
----------------------------------------------------------------------------------------
Chiron 0 20 40 60 80 100 120



Sun 1 21 41 60 80 101 121
Moon 2 22 42 62 82 102 122
Mercury 3 23 43 63 83 103 123
Venus 4 24 44 64 84 104 124
Mars 5 25 45 65 85 105 125
Jupiter 6 26 46 66 86 106 126
Saturn 7 27 47 67 87 107 127
Uranus 8 28 48 68 88 108 128
Neptune 9 29 49 69 89 109 129
Pluto 10 30 50 70 90 110 130
Node 11 31 51 71 91 111 131
Part of fortune 12 32 52 72 92 112 132
MC 13 33 53 73 93 113 133
ASC 14 34 54 74 94 114 134
11. house 15 35 55 75 95 115 135
12. house 16 36 56 76 96 116 136
2.house 17 37 57 77 97 117 137
3. house 18 38 58 78 98 118 138
---------------------------------------------------------------------------------------

The result is a sign number (1-12)

See also HSI HPOS PPOS
______________________________________________________

PSTAT

Stack:  X PSTAT  ® 

PSTAT controls the output suppression much the same as MACON and MACOF. It is a 
leftover from the DOS PCA which neede more control of output to screen and printer.

0 PSTAT: turns output off
1 PSTAT: turns output on
8 PSTAT: returns 1 if ointput is turnted on 0 if not

See also: MACON MACOF
.______________________________________________________

PTMP                                    (parameter change temporarily)

Stack: PTMP  ®

If you change the PCA settings using XLI, you may assure, that the changes are 
temporary just while the XLI module is running, and will be set back to the old values, as 
soon as the module has finished. This may be a special colour setup,  whatever else you 
can do with the XLI configuration codes.



PTMP will also restore the menudata. I for instance you have calculated a series of charts 
by changing the current data using MEPUT it will automatically be restored to the values it 
had when code PTMP was executed. So normally, you would place PTMP at the very start
of your code. The restore will happen at the time, when all macros and XLI files are 
exhausted. If you wish to restore earlier, you should use the code TIDY.

The system variables are saved in a temporary file called SYSVARS.$$$.

If a module produces an error and exits, it may not tidy up properly. Trying to run the 
module again or another module using PTMP may then give an error "cannot create 
SYSVARS.$$$" (because it already exists). To fix this, try to run an empty XLI macro just 
with one $ sign. 

see also TIDY
______________________________________________________

PTR

Polar to rectangular conversion of coordinates. If you need to draw circles or other shapes,
where you would normally need to calculate sines and cosines, this code will do the 
conversion for you.

The polar coordinates are

V: the angle measured counter-clockwise in intang
R: radius (integer)

So: V R PTR ® X Y

Example: draw a circle radius 700 in steps of 10 degrees, which is approx 1820 intangs:

$
GRON
0 34 FOR
1 CNT 1820 MUL 700 PTR DRAW
NEXT
PENUP

$$$

There is no integer code reversing from rectangular to polar coordinates, 

See also:  FPPTR FPRTP
______________________________________________________

PUT

Stack: X Y PUT  ® 



Writes one value into the stack, overwriting the value already there. The position is offset 
from the ZZO marker, which MUST have been set before at some point. If the ZZO marker
is not set, you risk to crash the program or produce unreliable results.

Examples:

ZZO 3 7 2 11 0 PUT  ®  11  7  2
ZZO 3 7 2 11 1 PUT  ®   3 11  2
ZZO 3 7 2 11 2 PUT  ®   3  7 11

See also: GET ZZO
______________________________________________________

PV              

Stack:  X PV  ®  (speed of planet X)

This code gives the speed of planet X measured in intang units per day/year etc, that is, 
per the natural unit for the chart type in question. It may be negative, if the planet is 
retrograde. To convert to minutes of arc, use the ITOM code.

For house cusps and the part of fortune in radix and transit charts which runs very fast, 
you must add 360 degrees to get the speed correctly.

This code may be used to calculate the orbspeed of an aspect:

X PPOS Y PPOS SUB AZP XY 12 MUL
X PV   Y PV   SUB DIV

This coding will result in the number of months an aspect is from its exact value, negative 
is separating positive if applying. Note however the following problems:

1. If X and Y runs equal speeds, you will get a division by zero error.

2. If one of the planets is a radix, you should take only the speed of the moving planet.

3. If one of the "planets" is a transit angle or a solar or lunar return, the speed will be more 
than one revolution a day, and the formula will fail.

The planet numbers allowed are listed under PSI.

See also: HV PPOS HPOS

______________________________________________________

RCL
RCL~
NRCL~



(recall)

Stack: X RCL  ®  (value from memory cell X)

Fetch a value from memory cell number X. The memory cells are not initialised, so you 
have to put something there using code STO before it will have any meaning to read it 
back using RCL.

The integer storage has 3000 positions, so X must be in the range 0-3000. You may 
however resize the range using the code ISTOZ.

The FP version RCL~ has only one storage cell and will place this on the FP stack
The NRCL~ has one argument and 32 positions (resizeable with code FSTOZ)

examples 4.0 NRCL~ will place contents of FP sto cell 4 on the FP stack.
4.0 RCL~ will place the contents of the single storage on the FP stack

See also: STO STO~ NSTO~ FSTOZ ISTOZ
______________________________________________________

RE2SP
SP2RE

(FP rectangular to spherical coordinates and reverse)

FPStack: x y z RE2SP ® h v r

r v h SP2RE ® z y x

See also: SP2RE ROT ROTX ROTY ROTZ
___________________________________________________________________

RECH            (recent chart)

Stack:  RECH  ®  (chart type)

This code will tell which type the "latest calculated chart" is, e.g. Radix, Progressed, Solar 
arc or whatever. It may be useful to print a heading or to branch to a certain interpretation.

It may also be useful to condition your output, which may be different depending on chart 
type. For example if it is a non-radix, you may want to output extra information about the 
relationship to the calculated radix. 

The chart type numbers are the ASCII value for the key you press to calculate it. For the 
ones called with the X (extra) prefix for example month transits (XM) use lower case value 
(m=109). Here is the complete list:

82  R Radix



80  P Progressed
84  T Synastry (Transit as second chart)
76  L Lunar return
83  S Solar return
69  E Tertiary 1
70  F Tertiary 2
66  B Solar arc direction
71  G Composite
72  H Relationship
68  D Day chart

109  m Month graphic transit
121  y Year graphic transit
97  a 5 year graphic progressions 
98   b 60 year graphic progressions
77   M 1 month graphic collective transits
89   Y  1 year graphic collective transits 

Having the RECH number, you may want to get the name of the chart type:

For example
RECH 601 ADD 1 SYSTR 
will place the name of the the recent chart in string 1

______________________________________________________

REF

1 REF switches referenced interpretation on, 0 REF swtiches it off.

______________________________________________________

RETN (return from subroutine)

This code terminates your subroutine. When the subroutine is scanned, this code means: 
"end of scan", while when it is actually later executed, this code means "return to calling 
point".

See also: SUBR PROC
______________________________________________________

REVNO 

Stack:  REVNO® Argus revision number
______________________________________________________

RND



Stack: X RND  ®  random(X)

Produces an integer random number between 0 (including) and X (not including).

______________________________________________________

ROT (2D) rotate

FP stack:  x y v ROT ® v y x 

Given x,y  coordinates, rotate coordinate system counterclockwise by angle v to get new 
coordinates. 

You could consider the task the same as rotating point x,y by angle v clockwise around the
origin (0.0)

See also ROTAT ROTX ROTY
___________________________________________________________________

ROTAT (rotat)

Stack: v ROTAT ®

Change the rotation of future DRAW commands, so that they will get rotated 
counterclockwise around current origin by angle v (intang units).

See also: GPUSH GPOP GCLR DRAW PENUP POLY

___________________________________________________________________

ROTX (3D)

FP stack:  R V H rot ROTX  ® h v r

With spherical coordinates rotate coordinate system around X axis (clockwise as seen 
from x) to get changed coordinates.

R spherical coordinate radius
V spherical coordinate angle degrees
H spherical coordinate height angle degrees
rot angle to rotate (0-360°)

result is new h v r coordinates

See also ROTY ROTZ ROT
___________________________________________________________________

ROTY  Rotate equivalent to ROTX
___________________________________________________________________



ROTZ   Rotate equivalent to ROTX

___________________________________________________________________

RSIZE

Stack:  n RSIZE

n is a percentage. n=0 will plot everything in a dot at the origin. n=200 will plot everything 
double sized and possibly be cropped.

You may make the following graphics draw smaller or bigger using this code. n is the 
percent magnification. For instance, the chartwheel will normally print in a +- 1024 square. 
To make it print half size, you use 50 RSIZE first.

The area taken up on the screen remain unchanged. Only the content is resized.

Se also SCALE

______________________________________________________

RTA

Stack:  RTA  ®  

This is a code specialised for interpretation of graphic transits. It will reset the aspect 
counter to the first in the sorted order. See also the code NTA.

See also: NTA NTAX RTA
______________________________________________________

RUL

Stack:  X RUL  ®  (ruler)

Find the ruler of sign number X. The rulers are the "modern" ones including Uranus, 
Neptune and Pluto. So for example: 8 RUL will produce 10 (Pluto) which is the ruler of 
Scorpio (sign 8).

If you need "old" rulers, where e.g. Saturn rules Aquarius, you could set up a table:

ZZO 0 5 4 3 2 1 3 4 5 6 7 7 6

Now s GET will give you the old ruler of sign s

Another way is to convert rulers 8,9 and 10 to 7,6 and 5:



RUL  1 DUP 7 < IF CHS 15 ADD ENDIF
______________________________________________________

RX

Stack: X RX  ®  (1 or 0)

If planet X is retrograde the result is 1 (true), if direct, it is zero (false). The planet numbers 
allowed are listed under PSI.
______________________________________________________

SCALE

x y SCALE (define graphic frame)

Normally graphics work within a coordinatesystem of x and y between +-1024. This can be
changed using SCALE, which sets alternative user coordinates. With SCALE, x and y can 
also be different, so one is not any more confined to using a square graphic area. The 
GRON and window resize handler will then adapt the device plotting area to make the 
graphic as big as possible within the window allowed.

The x and y units are still equal so that e.g. drawing a square of 100 * 100 will actually look
like a square on both screen and printer.

The SCALE code must be executed before GRON to have any effect. GRON will do the 
actual rescaling and clear the graphic frame.

This outer frame is made from the left and right, top and bottom margins of the printed 
page. The margins are defined in the preferences page layout menu of ARGUS.

Then the graphic frame is scaled down according to the wheelsize defined in the page 
layout preference.

To get rid of these restrictions, you may change the page layout from within XLI before 
calling SCALE. There is no single code for this, but here is the procedure:

$
PTMP
0   1 NTOS  1 -1 SYSTR ;set left margin to 0
1   1 NTOS  6 -1 SYSTR ;set right margin to 1
100 1 NTOS 15 -1 SYSTR ;set plot scale to 100 %
0   1 NTOS 18 -1 SYSTR ;set vertical margin to 0 %

$

The PTMP assures, that the Argus page layout change is local to the current XLI session.

See also: GRON GROFF RSIZE ROTAT GPUSH GPOP GCLR
______________________________________________________



SCM

Stack: SCM ®

Inside an encrypted module, you may read the encryption key using this clode

Default value: -1 (not encrypted)

See also USR
___________________________________________________________________

SETTI

FP Stack: gmt  GETTI ® 

Insert FP time in days since 1. jan 1900 at 0h GMT  as menu values into the date and time
fields. The value includes time of day as decimals.

The content of the zone field is used to adjust the inserted GMT to match the menu zone, 
which is unchanged. 

get GMT time from input data as FP number. This will be a positive number if the date is in 
19xx or  later, and negative if before.

See also: GETTI GETZO SETZO MEGET MEPUT

___________________________________________________________________

SETZO

FP Stack: z  SETZO ®

Insert timezone (including DST) as menu values.
z is the timezone measured in days east positive west negative, a number between -0.5 
(12 h west) and +0.5 (12 h east);

See also GETZO GETTI SETTI
___________________________________________________________________

SHAPE

Stack:  SHAPE ®

Draw shape from values in string. The shape points coordinates are compacted into a 
string. This format is also used in the shape tables stored  in system variables 248-420

Header is the first four positions in the string, To be interpreted as header, at least one of 
these four characters must be outside the range "0"-"F" (chr 48-70).  The header is used to
describe what the symbol is about, for example Vir (virgo). The header may be omitted, in 
which case the string must be all valid HEX codes.



The following characters are Hex-codes in groups of 4: XXYY

 XX="00" and YY="00" plots to (-510,-510)
 XX="FF" and FF="00" plots to (+510,+510)

So drawing is done in a square matrix of 256 x 256 units

The shape is scaled down by 0.6 if the header contains a ":" and by 0.8 if the header 
contains a ".".

In case two succedent groups are equal, the shape up to that point is closed and drawn 
with the current pen color  and pen width and filled with the current brush color: This way it
is possible to draw composite shapes with multiple fills.

See also: DRSYM
___________________________________________________________________

SIN

FPstack: X SIN ® sin(x)

FP sine (degrees)

See also COS TAN ATAN ACOS ASIN

___________________________________________________________________

SKZ

Stack  b SKZ ®

If b is zero: ignore the rest of the paragraph and any output it may produce. 

See also: WAIT CONT
___________________________________________________________________

SNAME

Converts a sign number to a negative system string number for use with NUMS. SNAME 
is the equivalent of writing: 570 ADD CHS

see also ANAME, PNAME
______________________________________________________

SNO             (serial number)

Stack:  SNO  ®  (number) 

Get Argus serial number. This code is obsolete,  as it only takes the lowest 16 bits of the 
number, i.e. et cannot handle serial numbers higher than 32767.



See also: USR SCM PMIS PASSW 
___________________________________________________________________

SORT

FP stack: x1 x2...xn N SORT® p1 p2..pn

A tiny bubble sort of max 15 FP values (items)

N is the number of items to sort
X1, x2.. the items
p1, p2.. are pointers to xmin....xmax
The values themselves are lost.

Note: This sorting is obsolete. you could probably get a better control and performance by 
XLI programming the sort yourself. Using the above, You should keep a copy of the 
original values. A pointer to where the value was placed before is not very useful.
___________________________________________________________________

SP2RE 

FP Spherical to rectangular coordinates

See also: RE2SP ROT ROTX ROTY ROTZ
___________________________________________________________________

SPRCH

Stack: lopla hipla width SPRCH ®

Spread planets of given chart. The chart memory in Argus holds arrays of positions and 
other planetary and house info. A second array is reserved for "spreaded" positions, that 
is, planets positioned too close to each other to display in the chartwheel without 
overlapping are moved a little away from each other to avoid the problem.

Initially the  spreaded array holds the true positions, to spread them use the code SPRCH 
code.

lopla: the lowest planet to spread, normally the  Sun (1)
hipla: the highest planet to spread, normally Pluto (10) or Moons node (11)
width: the minimum acceptable distance between two planets e.g. 8 (degrees)

The chartwheel functions in Argus automatically calls the spread with a width defined by 
the planet symbol size set in the preferences menu. You may need to call the function in 
XLI if you are using DRPLA to draw planets.

See also: SPRED
______________________________________________________



SPRED

Stack: lomem himem spread SPRED ®

Spread planets like in chartwhel. This spreading function is more low level than SPRCH 
giving you more control, but it does not change the chart memory array for spreaded 
positions. The only way to do that is to use SPRCH.

The positions must be located in intang units in the STO array from lomem to himem. So 
there will be himem-lomem+1 planet positions to spread. z is the minimum angle allowed 
also in intang.

If spread is positive, the spreading is circular, e.g. a planet in 0 degrees are spread from a 
planet in 359 degrees. If spread is negative the spreading is linear. A linear spread can be 
used for drawing planets along a linear axis of a graph. The astromap module delivered 
with Argus 4.2 is an example of this.

See also: DRPLA
______________________________________________________

STCAT           (string concatenate)

Stack:  X Y Z STCAT  ® 

Join to strings into one. X, Y and Z are string array indexes for 1st string, 2nd string and 
destination respectively.

So for example:

$
1 CARY

Julian,+,Claire,
$
0 1 3 STCAT     ;join Julian and '+' and place as string 3
3 2 3 STCAT     ;join Julian+ and Claire and put back to 3
3 NUMS

@@@@@@@@@@@@@@@@@@@@@@@
$$$

The above should print Julian+Claire

See also: STCMP, STCUT, STCAT, STDEF, STLEN, STPOS CARY

______________________________________________________

STCHR



Stack: chr pos ix STCHR > oldchr

Manipulate single char in string

chr: character (ascii value) to insert
pos: position in string first position is 1
ix: string number to manipulate
result: oldch, the character previously at position pos

If pos is negative, you will get oldchr without changing the string

See also: STCMP, STCUT, STCAT, STDEF, STLEN, STPOS, CARY
___________________________________________________________________

STCMP           (string compare)

Stack:  X Y STCMP  ®  (0 or 1)

Compare to strings in the string array. The result of the compare will be:

0:      Strings are equal
1:      Strings are different

The compare is not case sensitive:

$
1 CARY

Ähnlich,+,ähnlich,
$
0 2 STCMP NUMS

######
$$$

This will produce a zero, because string 0 and string 2 are regarded as equal, even if one 
starts with a capital, and the other with a lowercase letter.

See also:  STCUT, STCAT, STCHR,STDEF, STLEN, STPOS CARY
______________________________________________________

STCUT           (string cutout)

Stack:  X Y P Q STCUT  ® 

Cut out a substring from a string in the string array.

X: Source string index



Y: Destination index
P: Cutout start at character number
Q: Cutout end at character number

The following example prints 9 different cuts of the same word:

$
1 CARY

Macedonia,
$
1 9 FOR  ;loop 9 times
0                           ;index of string to cut
1                           ;index where to put the result
1 CNT                   ;start of cut
1 CNT 3 ADD              ;end of cut
STCUT
1 NUMS

@@@@@@@@@@@@@@@@@@
$
NEXT

$$$

This will print like this:

Mace              
aced              
cedo              
edon              
doni              
onia              
nia               
ia                
a                 

See also: STCMP, STCAT, STCHR,STDEF, STLEN, STPOS, CARY

______________________________________________________

STDEF           (string define)

Stack:  X STDEF  ® 

Insert a string into the string array number X. The string must be in the first line in the text 
field. For example to insert the phrase: "IBM the big blue" as string array number 17:

$



17 STDEF

IBM the big blue
$

This is used to define or replace single string array elements. If you wish to define the 
complete string array in one go, it is easier to use the CARY code.

See also: STCMP, STCUT, STCAT, STCHR, STLEN, STPOS, CARY

_____________________________________________________

STLEN           (string length)

Stack:  X STLEN  ®  (length of string X)

String length of number X in the string array.

Example:

$
1 STDEF

Atlantic
$
1 STLEN NUMS

#########
$$$

This will print the number 8 which is the number of characters in the word: Atlantic.

See also: STCMP, STCUT, STCAT, STCHR,STDEF, STPOS; CARY

______________________________________________________

STO             
STO~ 
NSTO~

Stack: X Y STO  ®  X
FP stack: X Y NSTO~ X
single storage position X STO~

Store X in memory cell number Y. There are 3000 memory cells available (numbered 0-
2999), so it is possible to create tables etc. This limit can be expanded using the code 



ISTOZ Note that X is not removed, so storing the same value in several cells could look 
like this:

26 0 STO 1 STO 2 STO 3 ST0 ....

which will store the number 26 in cell 0-3 inclusive.

The FP version (NSTO~)  works on the FP STACK and storage. Initially Argus has 32 STO
storage positions, but you may expand this using the code FSTOZ

There is also a single position memory, which can be accessed with the STO~ code.

See also: RCL RCL~ NRCL~ FSTOZ ISTOZ
______________________________________________________

STPOS

x y STPOS (find substring in string) ® position Look for substring stringarray[x] in string 
stringarray[y].

If not found, returns 0, else return position no.

See also: STCMP, STCUT, STCAT, STCHR,STDEF, STLEN; CARY

______________________________________________________

SUB
SUB~

Stack: X Y SUB  ®  X-Y

Subtracts two numbers

The FP version works on the FP stack

See also ADD DIV SUB MUL MOD DIVR MULT 
______________________________________________________

SUBR

n SUBR (Call previously scanned subroutine)

This code will call subroutine n (if it was defined). If you call an undefined subroutine (no 
previous PROC with the same value of n) you will get an error message telling that no 
subroutine n exists.

Parameters:



Note, that you may use the stack to transfer parameters and results. In the example below,
a chartwheel printed by the subroutine is resized with a figure, which is calculated by the 
calling routine and pushed on the stack. The subroutine takes this value from the stack 
and resizes appropriately.

Here is a very simple subroutine example:

$
1 PROC RSIZE 12 0 WHEEL RETN

$
GRON
0 15 FOR 1 CNT 10 MUL 1 SUBR NEXT
GROFF

$$$

Please note, that FOR loops do not reliably work across subroutines.

See also: PROC RETN
______________________________________________________

SWDAT

x y SWDAT

Swaps the input menu data   

x y

1 0 radix   <> actual
1 5 radix   <> horary
1 6 radix   <> selected
0 0 current <> horary
0 6 current <> selected
0 3      current <> temporary radix
0 4 current <> temporary current
5 6 horary  <> selected

temporary: both radix and current are saved 

NOTE: The swap includes the fields: Name, Place (city), Country and area code. Note that
the selected card may have been forced by Argus to point to ACTUAL since the XLI was 
called. Swapping 0<>0, 1<>1 etc has no effect. X and y must be different, but the order is 
irrelevant, so 0 2 SWDAT and 2 0 SWDAT will have the same effect.

NOTE: index 3 and 4 are temporary copies of index 1 (radix) and 2 (current). If the code 
PTMP has been used the XLI will restore the original values upon return, meaning that the 



data in index 3 and 4 will be used to restore the input menu. Accessing them here means, 
that it is actually possible to change even the restore values, even if this is normally not 
recommended. They should only be read.

The full list of possible indices is:

Index 0: Currentdata                (earlier radixdata)
1: Radixdata                (earlier currentdata)
2: Currentdata                (earlier presentdata)
3: Temprdata                (earlier selecteddata)
4: Tempcdata                (new)
5: Presentdata                (new)
6: Selecteddata                (new)

See also BDSEL
______________________________________________________

SWFLG

Stack f SWFLG ®

Set extra Swiss Ephemeris flags

The swiss ephemeris specifies a couple of flags to control how planets are calculated.

SEFLG_JPLEPH 1L use JPL ephemeris 
SEFLG_SWIEPH  2L use SWISSEPH ephemeris, default
SEFLG_MOSEPH  4L use Moshier ephemeris 
SEFLG_HELCTR 8L return heliocentric position 
SEFLG_TRUEPOS 16L return true positions, not apparent 
SEFLG_J2000 32L no precession, i.e. give J2000 equinox 
SEFLG_NONUT  64L no nutation, i.e. mean equinox of date 
SEFLG_SPEED3 128L speed from 3 positions (poor performance) 
SEFLG_SPEED 256L high precision speed (analyt. comp.)
SEFLG_NOGDEFL  512L turn off gravitational deflection 
SEFLG_NOABERR 1024L turn off 'annual' aberration of light 
SEFLG_EQUATORIAL2048L equatorial positions are wanted 
SEFLG_XYZ    4096L cartesian, not polar, coordinates 
SEFLG_RADIANS 8192L coordinates in radians, not degrees 
SEFLG_BARYCTR 16384L barycentric positions 
SEFLG_TOPOCTR (32*1024L) topocentric positions 
SEFLG_SIDEREAL (64*1024L) sidereal positions 

___________________________________________________________________

SYMIX           (symbol index)

Stack: SYMIX ®



Symbol mapping determines which symbols are drawn in the chartwheel and when using 
the DRSYM. These symbol shapes are defined in system variables  248 to 420 and can be
redefined with the code SHAPE.

This table works both for position output using the pca-ansi.ttf font and for plottet output 
like chartwheels etc.

There is another (longer) symbol mapping table in system string 10 which works for font 
output only, and may be overridden if abbreviations are selected instead of symbols.

Both tables can also be changed manually in the system string preferences or whith the 
SYSTR code. 

With SYMIX you may assign which of the symbols are shown by which codes. The symbol
mapping table (system variable 31) is changed e.g. when you  change which Pluto symbol 
to use in the preferences menu.

The assignment is determined by a string, which you should apply as the first line in the 
text field. Only the first 24 symbols may be reassigned, so the string should not exceed 24 
characters. An example:

$
SYMIX

€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—
$$$

The positions in the string represent the symbol to replace, the characters the 
replacement.

The replacement symbols are:

128-138 =                 Sun to Pluto  (Danish symbols)
145-156 =                 Ari to Psc
139 =                 Node
144 =                 Arrow
141 =                 German Uranus
142 =                 German Pluto
143 =                 English Pluto

See also: SHAPE SYSTR
______________________________________________________

SYN

Stack:  SYN  ® 

This is a highly specialised code for synastry output, of the type, where you merge the two 
person's names into the text.



SYN have two effects:

1) It inserts the current name and the radix name into position 1-4 in the string array. If any
strings are already defined, their indexes will be incremented by 5. If radix person is 
Louise, and Radix2 person is Alexander, the string array will be:

String 0: empty 
String 1: Louise
String 2: Alexander
String 3: Louise's
String 4: Alexander's
String 5: (former string 0) etc.

2) It turns on a non-padding mode which will change the way NUMS inserts strings into the
text. Normally, when a row of @@@@@@@@@@@ is met NUMS will insert a string 
and if there are more @'s than the length of the string, it will be padded with spaces. This 
assures, that all lines will keep their lengths. SYN will turn the padding off, so that the text 
will smooth without empty spaces after the names. However, you must put enough 
@@@@'s to hold the longest name you will accept, which may be up to 20. This will make
most lines holding names truncate quite much, so better use say 10, and tell users not to 
insert longer names.

A better solution is to use 3 PAD which lets you use a single @ as text template which will 
then expand to the actual string length. In that case, you should add 3 PAD after SYN

See also: PAD

______________________________________________________

SYSAV

n l SYSAV (Save selected part of system strings to PCA.CFG)

Save l lines from line n onwards to PCA.CFG. This means, that XLI can make a change 
and update the disk, for example if you have an XLI module to make the user install 
options.

See also: SYSTR
______________________________________________________

SYSTR

L C SYSTR

SYSTR can access nearly all the PCA.CFG strings. A few are restricted The lines are 
numbered from zero onwards.

L is the line number in the configuration file.



C is the destination index in the string array.

Write: If C is negative, it means write configuration string,
Read: if it is positive or zero it means read.

So to read e.g  CFG line 126 (F6 Macro)  into string array no 34:
126 34 SYSTR.

To write it back:
1123 -34 SYSTR.

Special cases and restrictions for certain system strings:

0: read name of namefile
1: read header
3: read serial name
5: read current macro
67 read/write system string 3
68 read/write system string 0
69 read/write system string 1
71 read/write system string 5
73 (user number) is read only
81 C>0 applying orbs  read system string 141 
C<=0 write system string 141 and 142
82 C>0 applying orbs  read system string 145
C<=0 write system string 145 and 146
83 C>0 applying orbs  read system string 147
C<=0 write system string 147 and 148
84 C>0 applying orbs  read system string 153
C<=0 write system string 153 and 154
232..456 (shape tables) C<0 write shape table stroke converted to fill
above 500 : read or write language string L

Overwriting system strings is powerful and should be used with care. Changes are 
normally temporary though. If you start your module with PTMP the changes are local to 
the module, i.e. changed back at module exit. Without PTMP changes are local to the 
Argus session and system strings will be restored next time you run Argus unless you use 
the Save Changes in the preferences menu or use SYSAV to save some or many lines.

See also: SYSAV
______________________________________________________

TAB

n TAB (tabulate)

Tabulate to column n. Tabulation in Argus is normally done by changing the font in the 
current line to monospaced  (font: pca-ansi.ttf) and then insert spaces (if needed).



If the tab is less than the current point the next text is written from the nth column the line 
is cleared from column n and the new text starts there. Unless you use continuation line 
(putting a \ at the end of the previous line) tab simply inserts n spaces (changing font to 
monospaced).

See also: TABLN
______________________________________________________

TABLN

n TABLN

Print a horizontal line in text from current position till position n using the tabline color 
defined in PCA.CFG confix[6]. If n=0 it will draw length 80.

Please note, that no linefeed is added. So you may add text which will be kept on the 
same line. In many cases, you will want a linefeed which must be added by printing a 
blank line.
______________________________________________________

TAN

FPstack: X TAN ® tan(x)

FP tan (degrees)

See also SIN COS ATAN ACOS ASIN

___________________________________________________________________

TIDY

This code tests if there has been a PTMP data save code during the current XLI session. If
so, the values of the system variables and the 'current' birthdata will get restored to the 
value they had when the PTMP code was met. The test for PTMP is checking for the 
filename SYSVARS.$$$, which is then erased.
______________________________________________________

TXCOL

c TXCOL (change text color)

Change the current text output colour.  C is an 3-digit RGB value between 000 and 888.

See also COL
______________________________________________________

USR
Stack: USR ® user code



The interpreter uses the user number for encryption. The user code extracted is a a single 
8-bit number derived from the user number: hi(user) xor lo(user) where hi is bit 8-15 and lo
is bit 0-7.

See also: SNO
___________________________________________________________________

UTFIL

X UTFIL         print to file, equivalent to INFIL

X=n write n lines to file
X=0 close file
X=-1 open file for appending

if X>0 then the two first lines in the text part are used:

line 1=filename
line 2=print line

if the file is already open, the filename is ignored and writing will go to the current writefile. 
When finished, the file should be closed by coding 0 UTFIL.

IF the code NUMS is included in the paragraph, variables can be output the same way as 
normally written to screen or printer. In that case you just include templates in the print line
where you want the numbers or strings to be printed:

To append text to an existing file, you must first open it using -1 UTFIL having the first 
textline specify the filename. Succedent n UTFIL (n>0) will append to this file as normal.

See also: INFIL NUMS
______________________________________________________

VBTIM

Stack b VBTIM®

b=1 Dont translate character set in output
b=0 translate character set

Setting VBTIM to 1 has further effects:
disables inline font commands (see FONT)
disables translation of tabs to spaces

See also: OEM FONT
___________________________________________________________________

VICI
Stack: n VICI ®



Lookup in the atlas n closest cities to the current input menu location. If n is very big, it 
make take some time to complete.

___________________________________________________________________

WAIT

Stack: WAIT  ® 

Say you are writing an interpretation part with a heading and a number of paragraphs. The
conditions for these paragraphs may be of such a kind, that in some cases none of them 
are true. It could for example be a heading called "Special features" treating different 
aspect patterns and other combinations. If a chart has none of these patterns, you may get
the heading without any text. The problem is, that at the time, the heading must be printed,
you do not know if it should be printed at all!

Of course you may make all the coding twice, one to check all conditions just to see if the 
heading should be printed, and then next to check for each paragraph text. But this is 
tedious and clumsy.

The solution is to collect all these paragraphs in one file. The first paragraph of this file 
must hold the heading and the code WAIT:

$
WAIT

SPECIAL FEATURES:
----------------
$

After this all the other paragraphs belonging to this heading should follow.

Now the heading in the WAIT paragraph will be withheld, and not printed until a valid 
paragraph is met. First then the heading is printed, and then the paragraph.

The pending heading will be discarded when the file end or the code CONT is met. That is 
why you may put just the paragraphs belonging to this heading in that file. The CONT code
will discard any waiting paragraph and continue normally.

You may have only one paragraph with the WAIT code, and this MUST be the first 
paragraph in the file.

See also CONT
______________________________________________________

WHEEL

n b WHEEL 



Even if you can use MACV, MACW etc to make a chartwheel, these commands will start 
by clearing the graphics frame before drawing. The WHEEL code will just call the wheel 
without disturbing other graphics.

n=0     current chart
n=1     radix chart
n=2     current chart
n=3     aux 1 chart
n=4     aux 2 chart
n=5     present chart
n=12    double wheel with radix as outer and current as inner wheel
n=25    double wheel with current as outer and present as inner wheel

If n is two digits, the first is the outer and the second is the inner

b=0     houseless wheel
b=1     normal wheel
b=2     houseless wheel without data written below
b=3     normal wheel without data written below

The WHEEL code lets you mix a chartwheel with other graphics putting them into the 
same GRON GROFF part.

To use WHEEL, like other graphics command, you must first turn on graphics with the 
GRON code.
______________________________________________________

WKEY

Stack:  WKEY  ® 

Print the usual "Please press key" prompt, and wait for any keypress before continuing.

See also: MENU OPT KEY
______________________________________________________

XFEED

- Obsolete, no action

______________________________________________________

XIF             (eXit if)

Stack:  X XIF  ® 

This code will exit a FOR loop immediately, if X is "true" (not zero), so that it jumps directly 
to the first instruction after NEXT without doing the instructions inbetween.



This may be used, if you do not know on beforehand how many times the loop should 
count, but that it should be dependant on a condition.

For example, to test the number of aspects in a graphic transit list, you will only know 
when the list is exhausted (NTA produces a 0), that you should stop counting.

$
RTA                      ;reset transit list
0 10000 FOR              ;start large margin count
1 CNT                   ;get count number
NTA                      ;get aspect details
NOT XIF  ;exit if last (not) aspect
NEXT
NUMS

There were ##### transit aspects found!
$$$

See also: FOR NEXT CNT
______________________________________________________

XLOG

Stack: XLOG ®

Stop logfile output

See also: LOGX, DEBUG, PROFL
___________________________________________________________________

XPATH

n XPATH (get current XLI module path)

Loads the XLI path into stringarray[n]

see also: PPATH
______________________________________________________

XPLA            (extra planetary information)

Stack: X XPLA  ®  (info)

This code retrieves further coordinates from a previous PLA calculation. You should place 
this code immidiately  the PLA with only the X parameter in between.

X may have the values:



0:   heliocentric longitude, intang unit
1:   heliocentric latitude, intang unit
2:   heliocentric longitude velocity, intang unit
3:   geocentric lat, intang unit
4:   geocentric distance value AU*1000
5:   geocentric right ascension, intang unit
6:   geocentric declination, intang unit

So for example to print the declination for the Moon in degrees and minutes, you may 
code:

2 PLA 6 XPLA ITOMS 60 DIVR XY ABS XY NUMS

### ###

Note: Do not try to retrieve these figures for the part of fortune, this will not work.

See also: PPOS PDEG PV PLA YPLA XPLA XPOS FPPLA
______________________________________________________

XOR

Stack: x y XOR ® x xor y

Exclusive or bitwise operation.

See also OR AND NOT
______________________________________________________

XPOS

i b p XPOS ® info

(enhanced)

p is the planet number (0-11) 

b is the chart type:

0 current
1 radix
2 current
3 auxchart1
4 auxchart2
5 present
6 auxchart3

i is the information type:



0: helio longitude (intang)
1: helio latitude (intang)
2: helio long velocity (intang/day)
3: geo lat (intang)
4: geo distance value AU*1000
5: geo right ascension (intang)
6: geo declination (intang)
7: ayanamsha - Not working
8: harmonic*10
9: armc (intang)

Th heliocentric values are only available for planets 0..10, outside this range, you will get a
wrong planet error message.

See also: PPOS PDEG PV PLA YPLA XPLA XPLA FPPLA
______________________________________________________

YPLA

Stack: p YPLA ® e speed pos

Calculate other planet or body. With this code it is possible to calculate asteroids, 
transplutonians etc. but you will need the full Swiss Ephemeris installed for most of them. 
The Swiss Ephemeris can be downloaded from our international website.

p is the planet number

0 Chiron
1-10 Sun-Pluto
11 mean node
12 true node
13 true Lilith
14 earth
15 Lilith 
16 Pholus
17 Ceres
18 Pallas
19 Juno
20 Vesta
999001 Eris
90377 Sedna
136108 Haumea
28978 Ixion
136472 MakeMake
90482 Orcus
50000 Quaoar
Other bodies may be calculated using the filename number of the ephemeris files available
from Swiss Ephemeris. If not included in the download from EE, you may find them on the 
www.astro.com swiss ephemeris website.



results pushed on the stack are

e: ephemeris used as set in preferences: 0: none 1:ee 2: Moshier 3 Swiss
speed: intang/day
pos: longitude (intang)

In case of unsuccessful calculation, the e value returned will be 0

Additionally two values are pushed on the FP stack:

speed (degrees/day)
longitude (degrees)

Example: 50000 YPLA NUMS (~~~~.~~~)
will output the position of Quaoar using the time given in the input menu

The ephemeris file for this is placed in C.\sweph\ephe\se50000s.se1
This file should work from year 1500-2100.
A larger version se50000.se1 should work from 3000BC to 3000AD

See also: PPOS PDEG PV PLA  XPLA XPLA XPOS FPPLA

___________________________________________________________________

XY
XY~

Stack: X Y XY  ®  Y X

Swaps the two uppermost numbers on the stack.

The FP version works on the FP stack

See also DUP FETCH ZZO GET PUT
______________________________________________________

ZMODE       text fold mode

Stack: ZMODE ®

1 ZMODE will make long lines fold following the window width. So use this code in the 
start of your interpretation, if you want it to be auto-adjusting the paragraph width. The 
lines will not be expanded to obtain an adjusted right margin.

0 ZMODE will make long lines unfolded, so you will see only the first part of them.
1 ZMODE will make text left adjusted
2 ZMODE will make text centered ajusted
3 ZMODE will make text right adjusted
4 ZMODE will make text fully adjusted



______________________________________________________

ZNORM

Stack: ZNORM ®

When you change date in the input menu manually across a timezone shift, and an area 
code is present in the zone input field, the zone hour (and minute) is looked up in the zone 
table and ajusted correctly. 

Changing date/time in XLI e.g. with MEPUT or SETTI does not automatically make this 
lookup which could result in a wrong zone. The ZNORM code forces this lookup.

See also MEGET MEPUT SETTI GETTI
___________________________________________________________________

ZODOF

x ZODOF   (Change zodiac origin to x}

This will change the angular offset for planetary and house logitudes in the current chart. 
For instance to calculate a draco chart, just do an ordinary chart and then call 11 PPOS 
ZODOF. The offset is calculated from the original zodiak origin, so if call ZODOF more 
than once with different origin angles, they will all be relative to tropical zero Aries.

See also: AYA
______________________________________________________

ZZO     

Stack: ZZO  ®  (no action)

Marks an origin on the stack. The stack will normally be accessed "dynamically" from the 
top. You may however wish to access it from the bottom, which needs an origin. ZZO will 
mark the current top of stack, so that the following numbers put on the stack will get 
position 0, 1, 2 etc. These may then be accessed using the codes GET and PUT.

It can be used for instance if you need a temporary table without using STO. Use ZZO 
then push the table values on the stack. From then, you can use GET to get the table 
values or even change them (with PUT)

This does not affect the ordinary action of the stack, you may still use all the other codes 
as before.

See also: PUT GET
______________________________________________________

APPENDIX 1  - Tables



______________________________________________________

MACROS

Macro 8 is a macro for changing the master orb limit and the orb scheme

8R set orbscheme R
8P set orbscheme P
8S set orbscheme S
8C set orbscheme C
8X set orbscheme none
8ddmm. set master orb to ddmm

Macro 7 will set the harmonic number:

7iii,fff.

The comma separates the integer and fractional part of the harmonic number and the point
terminates the argument as ususal. So e.g. the macro 712,6. will change the harmonic 
number to 12.6. To put it back to 1, the macro is just 71.

______________________________________________________



ITEM NUMBERING
___________________________________________

ITEM current radix GTR GTR colour                    
 radix  transit

___________________________________________

Chiron 0 20 @ `
Sun 1 21 A a 18                            
Moon 2 22 B b 19
Mercury 3 23 C c 20
Venus 4 24 D d 21                            
Mars 5 25 E e 22                            
Jupiter 6 26 F f 23                            
Saturn 7 27 G g 24                            
Uranus 8 28 H h 25                            
Neptune 9 29 I i 26                            
Pluto 10 30 J j 27                            
Node 11 31 K k 28                            
Part.fort 12 32 L l                                 
ASC 14 34 N n
2. house 17 37 Q q
3. house 18 38 R r
4. house
5.house
6.house
7.house
8.house
9.house
MC 13 33 M m
11.house 15 35 O o
12.house 16 36 P p
Conjunction 29
Opposition 30                            
Square 31                            
Trine 32                            
Sextile 33                            
Semisquare 34                            
Sesquisquare 35                            
Inconjunct 36                            
Semisextile 37       
Semi-quintile 38
Quintile 39
Tri-decile 40
Bi-quintile 41
Septile 42
Bi-septile 43
Tri-septile 44
 
                 



The two first columns are the numbers used for e.g. PPOS and other chart access.

The GTR columns are the letters used with code GTR and GTP setting up graphic transits 
and progressions.

The color items in the right column refer to the color definitions which are used both in the  
color preferences menu and also used with codes COL DFCOL FONT PENC BRCOL 
GRCOL TXCOL and DFCOL

Only the indices for Current and Radix positions are shown above. It is also possible to 
access the positions of horary and the auxchart1 and 2 etc (used as temporary storage):

Positions numbers: *)

0..18: Current
20..38: Radix
40..58: Current (equal to 0..18, earlier Auxchart 1) 
60..78: Auxchart 1 (earlier auxhchart 2)
80..98: Auxchart 2 (earlier Horary chart)
100..118: Horary chart

*) Position numbers are used in the followin codes:

PSI     PHS     RX      HSI
HRU     APOW    ANUM    AORB
PDEG    PPOS    HPOS    PV
HV

______________________________________________________

PCA.CFG System variables:

Line:

0:             File heading, not used
1:             Language number:
2:             Page header for printouts
3:             Page footer for printouts
5:             Left margin for printouts (% of page width)
6:             Right margin for printouts (% of page width)
7:             Printer font: Name,Pointsize,Style
8:             Screen font: Name,Pointsize,Style
9:             Symbol font name:

Characters (128-175) will use this font with symbol size and style adapted, as if they
were part of the rest of the text. Please note, that these symbols in the Argus font 
(pca-ansi.ttf) are wider than normal, so you should assign a space extra after the 
symbol to accomodate the width.



10:   Symbol font mapping table:

This is a row of characters, normally chr(128-175).
If an alternative symbol font is used which has the symbols placed differently,
you may change the mapping.

For example, if Moon, which in ARGUS is no 130 in thenew font is no 277, 
then the 3rd character in themapping table string must be chr(277).

Note, that thereis also a mapping table called SYMIX which works on both 
text printout and on the chartwheels.

11: If present and in the range 50-500 defines the output lineheight.  Default is 100.

12: Top margin used in printouts as defined in layout preferences

13: Bottom margin used in printout  as defined in layout preferences

14: Left,top.width and height of main window stat latest session

15: Plot scale: size of chartwheel on printouts (0-100%)  as defined in layout 
preferences

26:  Chart style: 0=Lotus, 1=English, 2=Universal, 3=French

27:  Chart orientation:
     0 ASC left
     1 MC up
     2 Radix ASC left
     3 Radix MC up
     4 Aries right
     5 Aries up
     6 Aries left
     7 Aries down

28: Aspectstyle:
     0 To Symbol
     1 To center
     2 To Degree
     3 No aspect

29: Planet size (0-100)

31: SYMIX Symbol mapping table:

    This table works both for the plotted symbols on
    the chartwheel and the printed fonts on the positions
    output. It is used to determine which symbols to use
    for Pluto and Uranus. It works the same way as the



    font mapping table (system variable 10). You should
    first make table 10 match the Truetype font used for
    text printouts, then if necessary map the correct Pluto
    and Uranus symbol witn this table.

32: Size of degrees and minutes figures on chartwheel.

34: Aspect linewidth

35: Linewidth (linwid) unused

36: progtab years (blank=60)

39: Astromap system:
    0: zodiacal positions
    1: true positions

40: Moons node:
    0 Mean node
    1 True node

41: Astrological reference in interpretations (1=yes 0=no)

42: Midpoint aspects type
    1 180 degr.
    2  90 degr.
    3  45 degr.

43: Midpoint sort system
    0 360 degr
    1 180 degr
    2  90 degr
    3  45 degr
    4  221/2 degr

44: House system
    0 placidus
    1 Koch
    2 equal
    3 Regiomontanus
    4 campanus
    5 topocentric
    6 nat. degree
    7 porphyry
    8 alcabitius

45: Secondary progressed house system
    0 no movement
    1 naibod
    2 kundig



    3 ar solar arc
    4 ecl solar arc
    5 1 degr
    6 true motion 360/year

46: Tertiary progressed house system
    0 no movement
    1 naibod
    2 kundig
    3 ar solar arc
    4 ecl solar arc
    5 1 degr
    6 true motion 360/year

47: Method for part of fortune
    0 traditional
    1 Kontinental

48: Age point system
    0 part of fortune
    1 huber age point
    2 true huber age point
    3 logarithmic (Mann)

49: Style for graphic transits/Progressions
    0 shades (like DOS version)
    1 bars

53: 1=Use orbsets    0=disable orbsets

54: Master orb limit DDMM, eg. 830 means 8 deg 30 min

55: Solar arc system
    0 true houses
    1 equal movement

56: solar return system
    0 tropical
    1 siderial

57: Composite chart system
    0 all houses are midpoints
    1 Robert Hand method

58: Relationship chart system
    0 midpoint of lat and long
    1 great circle midpoint

59: Day chart method
     0 naibod



     1 naibod + progressed dir. arc
    10 naibod
    11 naibod + progressed dir. arc
    20 kundig
    21 kundig + progressed dir. arc
    30 ar solar arc
    31 ar solar arc + progressed dir. arc
    40 ecl solar arc
    41 ecl solar arc + progressed dir. arc
    50 1 degr
    51 1 degr + progressed dir. arc
    60 true motion 360/year
    61 true motion 360/year + progressed dir. arc

60: max items in output screen

67: checksum (control number for serial name etc)

68: serial number

69: licensee name

70: Initial data for input menu (comma separated)
    date,time,zonename,Latitude,Longitude,Charttype,,ZoneID:

71: Features switches:
        d= demodisk
        m=pcm runs any date from demo
        a=acs atlas
        txxxxxxxx=time limited until given date

72: Initial data for horary input menu
    Name,date,time,zonename,Latitude,Longitude,Charttype,,ZoneID:

73: Customer number

78: Aspect order. The order, in which aspects appear in the aspects printouts.
    The format is mainly the same as used in the GTR XLI definition, but simpler
    in that it uses only lowercase and only blocks of four for each set.

79: Aspect types: (comma separated pairs)
    List of ARGUS supported aspects. The first figure
    in each pair is the angle of the aspect in the format
    DDDMM, e.g. 13500 for a sequiquadrate and 5125 for a septile
    (51 deg. 25 min). The second figure in each pair is either
    0 (do not include) or 1 (include), which reflects the setting
    of the checkboxes in the orb menu.

80: Configuration swithces(0-63), inherited from DOS version (comma separated)
    0: bit 0=1 Chiron included



       bit 1=1 Exclude midpoint aspect type and orb
       bit 2=1 True Agepoint special formula
       bit 3=1 No header
       bit 4=1 No Footer
       bit 5=1 Jobdate printed
       bit 6=1 No page numbers on printouts
       bit 7=1 extended page format: "page xx of qq" (always english)

    3: 0 No degrees and minutes on chartwheel
       1 degrees on chartwheel
       2 degrees and minutes on chartwheel

    5: 0 use symbols in printouts
       1 use latin abbreviations in printouts
       2 use national abbreviations in printouts

    6: Tabline colour 000-888 or -1 for text color;

    7: Reserved for black use of Argus (no menus, auto-quit)

    8: bit 0=1 No orbspeeds, aspects printed in 4 columns
       bit 1=1 unused
       bit 2=1 No aspects on bi-wheel
       bit 3=1 Short radix houses on bi-wheel
       bit 4=1 include bonatti sections
       bit 5=1 suppress chartwheel aspect to angles
       bit 6=1 include PtFt on chartwheel
       bit 7=1 horary clock graph includes all positions to the left
       bit 8=1 center chartwheel on page

   10: bit 1=1 suppress progressed moon in secondary and tertiary

   11: bit 1=1 sets orbcombine to minimum for planet pairs with a zeroorb planet.
    Other indexes are reserved for future use.

87: Output colours, comma separated
    0 Argus panel background
    1 Text colour
    2 Graph background
    3 Graph main line
    4 Graph angles
    5 Graph houses
    6 Ari
    7 Tau
    8 Gem
    9 Cnc
    10  Leo
    11  Vir
    12  Lib



    13  Sco
    14  Sgr
    15  Cap
    16  Aqr
    17  Psc
    18 Sun
    19 Moon
    20 Mercury
    21 Venus
    22 Mars
    23 Jupiter
    24 Saturn
    25 Uranus
    26 Neptune
    27 Pluto
    28 Node+Chiron
    29 Cnj
    30 Opp
    31 Sqr
    32 Tri
    33 Sxt
    34 ssq
    35 ses
    36 qqx
    37 ssx
    colours are decimal representations of windows color numbers.

91: Livechart logfile (movielog.nfi) size (default=100)
    The live chart keeps a separate namefile used as log.
    So if you open the livechart with data for a person already registered here,
    you will have the same checkboxes marked as last time.

92: Date style:
    0: european
    1: american

93: East/West default
    0: East
    1: West

95: warninglevels. If this is a number (0-65535) bits set will show
    warning types to switch OFF.
    bit 0 set: turn off data input warnings (DST warning)
    bits 1..15 not yet implemented.

96: if this is a number <> 0 swiss ephemeris will be used if present.
    set to 0 to force EE internal ephemeris.

97: if swiss ephemeris is installed with ephemeris files placed
    in another folder than <argusdrive>\sweph\ephe then you can put



    this path here.

101: Printfile filter character table

120: Startup macro

121-132: Macro definitions for F1-F12

140: Aspect orbsets assigned to chart groups
char[charttype]=digit
charttype[1]: Radix
charttype[2]: Transit
charttype[3]: Secondary
charttype[4]: Tertiary
charttype[5]: Minor
charttype[6]: Solar arc
charttype[7]: Solar return
charttype[8]: Lunar return
charttype[9]: Composite
charttype[10]: Relationship
charttype[11]: Daychart
charttype[12]: Clock chart
charttype[13]: graphic aspects

digits 1-8 matches orbsets RTPSHDCG
digit 0 matches none (no orbset assigned).

141-156  Aspect orb limits for sets 1-8
141+142 applying and separating orbset for set 1
143+144 applying and separating orbset for set 2
.... etc...

        (DDMM eg. 830 for 8 deg 30 mins)
        0: orb combine:
        0     Minimum orb
      1     Mean orb
      2     Maximum orb
        1-31  orb limits for aspects no 1-32
        32-50 orb limits for planet number 0-18
        51    orb limit for midpoints
        52 >0 use second orbset for separating aspects

248-420: Shape tables for graphic symbols
   The first four positions in each string tells what
   the symbol is.

  The following characters are Hex-codes in groups of 4: XXYY

 XX="00" and YY="00" plots to (-510,-510)
 XX="FF" and FF="00" plots to (+510,+510)

   So drawing is done in a square matrix of 128*128




